Three-component Ocean Bottom Seismometers, portable land stations and marine air gun seismic sources were used to carry out an onshore-offshore deep seismic profile in northeastern South China Sea. This profile, orien...Three-component Ocean Bottom Seismometers, portable land stations and marine air gun seismic sources were used to carry out an onshore-offshore deep seismic profile in northeastern South China Sea. This profile, orientated in NNW-SSE, was as long as 500 km and perpendicular to the strike of regional tectonics. The offshore data were processed in Taiwan Ocean University using a number of available software and the onshore data were analyzed in South China Sea Institute of Oceanology by new-written programs and public software. Preliminary results show that the seismic data are in good quality and contain rich information of deep structure. Seismic phases, e.g. Pg, PmP and Pn, are identified in the offset range 5~220 kin, which will provide an important dataset for the deep crustal structure and oil-gas basin evolution studies of this region.展开更多
The deep crustal structure of the Northwest Sub-basin(NWSB)of the South China Sea(SCS)is of great importance for understanding the tectonic nature of the continent-ocean transition(COT)and magmatism in this oceanic ba...The deep crustal structure of the Northwest Sub-basin(NWSB)of the South China Sea(SCS)is of great importance for understanding the tectonic nature of the continent-ocean transition(COT)and magmatism in this oceanic basin.The 2-D wide-angle reflection/refraction seismic profile OBS2006-2 is almost parallel to the extinct spreading ridge(ESR)of the NWSB.In addition to the original data,we added the data of two reprocessed OBS stations,and carried out seismic phase re-picking and travel-time imaging to obtain the crustal velocity structure along this profile.Resolution tests demonstrate that the newly acquired velocity structure is more reliable than the prior interpretation.The depth of the Moho(23.5–11.8 km)and crustal thickness(20.5–6.5 km)systematically changes from continental crust of the Xisha Block to the oceanic crust within the NWSB.The COT zone has a width of^20 km and the depth of the Moho decreases from 15.0 to 11.0 km,corresponding to a^4 km decrease in crustal thickness(6–10 km).A high velocity layer(HVL,7.2–7.4 km s–1)exists at the bottom of the crust at the location where the sharp lateral transition of the continental crust to the oceanic crust occurs.Age dating shows that the Doublepeak Seamount was formed at^23 Ma,after the cessation of the NWSB seafloor spreading(~32–25 Ma).The crust beneath the Double-peak Seamount is oceanic with a thickness of 9 km.We infer that this oceanic crust was formed by magmatic upwelling and decompression melting along a pre-existing zone of weakness.展开更多
基金Supported by SCSIO(LYQY200302)the Chinese Ministry of Science and Technology(G2000046701)+2 种基金the Guangdong Department of Science and Technology(2002C32604)the Guangdong Natural Science Foundation(021557)the National Natural Science Foundation of China(4000161958).
文摘Three-component Ocean Bottom Seismometers, portable land stations and marine air gun seismic sources were used to carry out an onshore-offshore deep seismic profile in northeastern South China Sea. This profile, orientated in NNW-SSE, was as long as 500 km and perpendicular to the strike of regional tectonics. The offshore data were processed in Taiwan Ocean University using a number of available software and the onshore data were analyzed in South China Sea Institute of Oceanology by new-written programs and public software. Preliminary results show that the seismic data are in good quality and contain rich information of deep structure. Seismic phases, e.g. Pg, PmP and Pn, are identified in the offset range 5~220 kin, which will provide an important dataset for the deep crustal structure and oil-gas basin evolution studies of this region.
基金supported by the National Natural Science Foundation of China(Grant Nos.41730532,91958212,91858212,41606064)the Major Projects for Talent Research Team Introduction of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(Grant No.GML2019ZD0204)the Guangdong Natural Science Foundation Research Team Project(Grant No.2017A030312002)。
文摘The deep crustal structure of the Northwest Sub-basin(NWSB)of the South China Sea(SCS)is of great importance for understanding the tectonic nature of the continent-ocean transition(COT)and magmatism in this oceanic basin.The 2-D wide-angle reflection/refraction seismic profile OBS2006-2 is almost parallel to the extinct spreading ridge(ESR)of the NWSB.In addition to the original data,we added the data of two reprocessed OBS stations,and carried out seismic phase re-picking and travel-time imaging to obtain the crustal velocity structure along this profile.Resolution tests demonstrate that the newly acquired velocity structure is more reliable than the prior interpretation.The depth of the Moho(23.5–11.8 km)and crustal thickness(20.5–6.5 km)systematically changes from continental crust of the Xisha Block to the oceanic crust within the NWSB.The COT zone has a width of^20 km and the depth of the Moho decreases from 15.0 to 11.0 km,corresponding to a^4 km decrease in crustal thickness(6–10 km).A high velocity layer(HVL,7.2–7.4 km s–1)exists at the bottom of the crust at the location where the sharp lateral transition of the continental crust to the oceanic crust occurs.Age dating shows that the Doublepeak Seamount was formed at^23 Ma,after the cessation of the NWSB seafloor spreading(~32–25 Ma).The crust beneath the Double-peak Seamount is oceanic with a thickness of 9 km.We infer that this oceanic crust was formed by magmatic upwelling and decompression melting along a pre-existing zone of weakness.