Cells are the basic unit of human organs that are not fully understood.The revolutionary advancements of optical imaging alowed us to observe single cells in whole organs,revealing the complicated composition of cells...Cells are the basic unit of human organs that are not fully understood.The revolutionary advancements of optical imaging alowed us to observe single cells in whole organs,revealing the complicated composition of cells with spatial information.Therefore,in this review,we revisit the principles of optical contrast related to those biomolecules and the optical techniques that transform optical contrast into detectable optical signals.Then,we describe optical imaging to achieve threedimensional spatial discrimination for biological tisutes.Due to the milky appearance of tissues,the spatial information burred deep in the whole organ.Fortunately,strategies developed in the last decade could circumvent this issue and lead us into a new era of investigation of the cells with their original spatial information.展开更多
Voluntary observing ship (VOS) observations are international obligations that must be fulfilled by China. Currently, the number of Chinese VOSs is showing a decreasing trend, which has decreased from more than one ...Voluntary observing ship (VOS) observations are international obligations that must be fulfilled by China. Currently, the number of Chinese VOSs is showing a decreasing trend, which has decreased from more than one hundred ships in the past to the current number of thirty something ships. Moreover, the observation capabilities have many existing problems, such as relatively outdated observation measures, simple observation parameters, and lack of observation data. Fundamentally speaking, the operation mechanism of VOSs lacks effective systematic assurance and protection. Consequently, these VOSs are unable to have sufficient operational capabilities and cannot effectively fulfill their international obligations.展开更多
The Integrated Marine Observing System [IMOS] is an Australian national program for observing the oceans around Australia. As one of its important nodes, the New South Wales Integrated Marine Observing System (NSW-IM...The Integrated Marine Observing System [IMOS] is an Australian national program for observing the oceans around Australia. As one of its important nodes, the New South Wales Integrated Marine Observing System (NSW-IMOS] aims to provide more accurate descriptions of the East Australian Current [EAC]. The purpose of this paper is to evaluate the potential economic benefits from NSW-IMOS. Six related sectors which can potentially be among its main beneficiaries are considered: beach recreation, commercial fishing, recreational fishing, recreational boating, natural hazard predictions, and oil spill mitigation. The 1% constant percentage increase evaluation method is used to estimate the potential economic benefits to these six beneficiaries. By using this method, our study shows that the total potential economic benefit for these sectors is estimated to be $ 6.07 million per year. We consider that this is indicative but not conclusive in demonstrating some of the potential economic benefits that can be provided from information gathered by NSW-IMOS facilities. We conclude with further evaluative approaches that could be used to provide more accurate estimates of potential economic benefits.展开更多
Detecting near-surface soil freeze-thaw cycles in high-altitude cold regions is important for understanding the Earth's surface system, but such studies are rare. In this study, we detected the spatial-temporal varia...Detecting near-surface soil freeze-thaw cycles in high-altitude cold regions is important for understanding the Earth's surface system, but such studies are rare. In this study, we detected the spatial-temporal variations in near-surface soil freeze-thaw cycles in the source region of the Yellow River(SRYR) during the period 2002–2011 based on data from the Advanced Microwave Scanning Radiometer for the Earth Observing System(AMSR-E). Moreover, the trends of onset dates and durations of the soil freeze-thaw cycles under different stages were also analyzed. Results showed that the thresholds of daytime and nighttime brightness temperatures of the freeze-thaw algorithm for the SRYR were 257.59 and 261.28 K, respectively. At the spatial scale, the daily frozen surface(DFS) area and the daily surface freeze-thaw cycle surface(DFTS) area decreased by 0.08% and 0.25%, respectively, and the daily thawed surface(DTS) area increased by 0.36%. At the temporal scale, the dates of the onset of thawing and complete thawing advanced by 3.10(±1.4) and 2.46(±1.4) days, respectively; and the dates of the onset of freezing and complete freezing were delayed by 0.9(±1.4) and 1.6(±1.1) days, respectively. The duration of thawing increased by 0.72(±0.21) day/a and the duration of freezing decreased by 0.52(±0.26) day/a. In conclusion, increases in the annual minimum temperature and winter air temperature are the main factors for the advanced thawing and delayed freezing and for the increase in the duration of thawing and the decrease in the duration of freezing in the SRYR.展开更多
Knowledge of the surface ocean dynamics and the underlying controlling mechanisms is critical to understand the natural variability of the ocean and to predict its future response to climate change.In this paper,we hi...Knowledge of the surface ocean dynamics and the underlying controlling mechanisms is critical to understand the natural variability of the ocean and to predict its future response to climate change.In this paper,we highlight the potential use of Volunteer Observing Ship(VOS),as carrier for automatic underway measuring system and as platform for sample collection,to enhance the observing capacity for the surface ocean.We review the concept,history,present status and future development of the VOS-based in situ surface ocean observation.The successes of various VOS projects demonstrate that,along with the rapid advancing sensor techniques,VOS is able to improve the temporal resolution and spatial coverage of the surface ocean observation in a highly cost-effective manner.A sustained and efficient marine monitoring system in the future should integrate the advantages of various observing platforms including VOS.展开更多
The combination of spin-orbit coupling (SOC) and in-plane Zeeman field breaks time-reversal and inversion symmetries of Fermi gases and becomes a popular way to produce single plane wave Fulde-Ferrell (FF) superf...The combination of spin-orbit coupling (SOC) and in-plane Zeeman field breaks time-reversal and inversion symmetries of Fermi gases and becomes a popular way to produce single plane wave Fulde-Ferrell (FF) superfluid. However, atom loss and heating related to SOC have impeded the successful observation of FF state until now. In this work, we propose the realization of spin-balanced FF superfluid in a honeycomb lattice without SOC and the Zeeman field. A key ingredient of our scheme is generating complex hopping terms in original honeycomb lattices by periodical driving. In our model the ground state is always the FF state, thus the experimental observation has no need of fine tuning. The other advantages of our scheme are its simplicity and feasibility, and thus may open a new route for observing FF superfluids.展开更多
With the newly proposed Global Ocean Observing Integration, ocean observing scope has been expanded from the region to the global, therefore the need of large-scale ocean observing system integration has become more a...With the newly proposed Global Ocean Observing Integration, ocean observing scope has been expanded from the region to the global, therefore the need of large-scale ocean observing system integration has become more and more urgent. Currently, ocean observing systems enabled ocean sensor networks are commonly developed by different organizations using specific technologies and platforms, which brings several challenges in ocean observing instrument (OOI) access and ocean observing system seamless integration. Furthermore, the development of ocean observing systems often suffers from low efficiency due to the complex prograrmning and debugging process. To solve these problems, a novel model, Complex Virtual Instrument (CVI) Model, is proposed. The model provides formal definitions on observing instrument description file, CVI description file, model calculation method, development model and interaction standard. In addition, this model establishes mathematical expressions of two model calculation operations, meanwhile builds the mapping relationship between observing instrument description file and CVI description file. The CVI based on the new model can achieve automatic access to different OOIs, seamless integration and communication for heterogeneous environments, and further implement standardized data access and management for the global unified ocean observing network. Throughout the development, integration and application of such CVI, the rationality and feasibility of the model have been evaluated. The results confirm that the proposed model can effectively implement heterogeneous system integration, improve development efficiency, make full usage of reusable components, reduce development cost, and enhance overall software system quality. We believe that our new model has great significance to promote the large-scale ocean observing system integration.展开更多
The observation of ultra high frequency radar during an ionospheric experiment carrying out at the European Incoherent Scatter Scientific Association, demonstrates a systematic variation in the altitude of the pump en...The observation of ultra high frequency radar during an ionospheric experiment carrying out at the European Incoherent Scatter Scientific Association, demonstrates a systematic variation in the altitude of the pump enhanced ion line, which is quite remarkably dependent on the pump frequency, that is, when the pump frequency sweeps above the fifth gyroharrnonic, the altitude of the enhanced ion line is ~3 to ~6 kin lower than that at the pump frequency very close to the fifth gyroharmonic. The analysis shows that the systematic variation in the altitude of the pump enhanced ion line is principally dependent on the enhanced electron temperature, although the changes in the profile of the electron density brought about by the ionospheric heating are not independent of those systematic altitude variations.展开更多
Juniperus excelsa subsp.polycarpos,(Persian juniper),is found in northeast Iran.In this study,the relationship between ground cover and vegetation indices have been investigated using remote sensing data for a Persian...Juniperus excelsa subsp.polycarpos,(Persian juniper),is found in northeast Iran.In this study,the relationship between ground cover and vegetation indices have been investigated using remote sensing data for a Persian juniper forest.Multispectral data were analyzed based on the Advanced Visible and Near Infrared Radiometer type 2 and panchromatic data obtained by the Panchromatic Remote-sensing Instrument for Stereo Mapping sensors,both on board the advanced land observing satellite(ALOS).The ground cover was calculated using field survey data from 25 sub-sample plots and the vegetation indices were derived with 595 maximum filtering algorithm from ALOS data.R2 values were calculated for the normalized difference vegetation index(NDVI)and various soil-adjusted vegetation indices(SAVI)with soilbrightness-dependent correction factors equal to 1 and 0.5,a modified SAVI(MSAVI)and an optimized SAVI(OSAVI).R2 values for the NDVI,MSAVI,OSAVI,SAVI(1),and SAVI(0.5)were 0.566,0.545,0.619,0.603,and 0.607,respectively.Total ratio vegetation index for arid and semi-arid regions based on spectral wavelengths of ALOS data with an R2 value 0.633 was considered.Results of the current study will be useful for forest inventories in arid and semi-arid regions in addition to assisting decisionmaking for natural resource managers.展开更多
There are a number of dirty data in observation data set derived from integrated ocean observing network system. Thus, the data must be carefully and reasonably processed before they are used for forecasting or analys...There are a number of dirty data in observation data set derived from integrated ocean observing network system. Thus, the data must be carefully and reasonably processed before they are used for forecasting or analysis. This paper proposes a data pre-processing model based on intelligent algorithms. Firstly, we introduce the integrated network platform of ocean observation. Next, the preprocessing model of data is presemed, and an imelligent cleaning model of data is proposed. Based on fuzzy clustering, the Kohonen clustering network is improved to fulfill the parallel calculation of fuzzy c-means clustering. The proposed dynamic algorithm can automatically f'md the new clustering center with the updated sample data. The rapid and dynamic performance of the model makes it suitable for real time calculation, and the efficiency and accuracy of the model is proved by test results through observation data analysis.展开更多
The experience of the mankind in studying the planet of our own, is long and the progress is accelerated. From the numerous geographic adventures organized in the past thousand years came only the brief knowledge of t...The experience of the mankind in studying the planet of our own, is long and the progress is accelerated. From the numerous geographic adventures organized in the past thousand years came only the brief knowledge of the outline of the land and ocean; with the scientific explorations and topographic mapping activities done in the 300-plus years that followed, only about 30% of the land got mapped. But things have been changed greatly since the beginning of the century, when the air planes were put into use for mapping: up to 1950’s, the mapped areas had gone up to 70%; From 1957, a series of resource and environment satellites have been launched one after another,observing the globe, giving coverage of it and providing endlessly varieties of information about the seas and the lands day and night.展开更多
THE walls at Jianguomen Station give you a hefty clue of what attractions are in the area before you’ve even exited the train.In common with many other subway stations in Beijing,you can get a pretty good idea of wha...THE walls at Jianguomen Station give you a hefty clue of what attractions are in the area before you’ve even exited the train.In common with many other subway stations in Beijing,you can get a pretty good idea of what famous monuments are close by,simply by looking at the tiles or mosaics that decorate the platforms.展开更多
Millimeter-wavelength radar has proved to be an effective instrument for cloud observation and research. In this study, 8-mm-wavelength cloud radar (MMCR) with Doppler and polarization capabilities was used to inves...Millimeter-wavelength radar has proved to be an effective instrument for cloud observation and research. In this study, 8-mm-wavelength cloud radar (MMCR) with Doppler and polarization capabilities was used to investigate cloud dynamics in China for the first time. Its design, system specifications, calibration, and application in measuring clouds associated with typhoon are discussed in this article. The cloud radar measurements of radar reflectivity (Z), Doppler velocity (Vr), velocity spectrum width (Sw) and the depolar-ization ratio (LDR) at vertical incidence were used to analyze the microphysical and dynamic processes of the cloud system and precipitation associated with Typhoon Nuri, which occurred in southern China in August 2008. The results show the reflectivity observed using MMCR to be consistent with the echo height and the melting-layer location data obtained by the nearby China S-band new-generation weather radar (SA), but the Ka-band MMCR provided more detailed structural information about clouds and weak precipitation data than did the SA radar. The variation of radar reflectivity and LDR in vertical structure reveals the transformation of particle phase from ice to water. The vertical velocity and velocity spectrum width of MMCR observations indicate an updraft and strong turbulence in the stratiform cloud layer. MMCR provides a valuable new technology for meteorological research in China.展开更多
Quantitative precipitation estimation and rainfall monitoring based on meteorological data, potentially provides continuous, high-resolution and large-coverage data, are of high practical use: Think of hydrogeological...Quantitative precipitation estimation and rainfall monitoring based on meteorological data, potentially provides continuous, high-resolution and large-coverage data, are of high practical use: Think of hydrogeological risk management, hydroelectric power, road and tourism. Both conventional long-range radars and rain-gauges suffer from measurement errors and difficulties in precipitation estimation. For efficient monitoring operation of localized rain events of limited extension and of small basins of interest, an unrealistic extremely dense rain gauge network should be needed. Alternatively C-band or S-band meteorological long range radars are able to monitor rain fields over wide areas, however with not enough space and time resolution, and with high purchase and maintenance costs. Short-range X-band radars for rain monitoring can be a valid compromise solution between the two more common rain measurement and observation instruments. Lots of scientific efforts have already focused on radar-gauge adjustment and quantitative precipitation estimation in order to improve the radar measurement techniques. After some considerations about long range radars and gauge network, this paper presents instead some examples of how X-band mini radars can be very useful for the observation of rainfall events and how they can integrate and supplement long range radars and rain gauge networks. Three case studies are presented: A very localized and intense event, a rainfall event with high temporal and spatial variability and the employ of X-band mini radar in a mountainous region with narrow valleys. The adaptability of such radar devoted to monitor rain is demonstrated.展开更多
This paper introduces a modified control cir- cuit of static tensile stage of Cambridge S-200 SEM.The function of the stage is extended to that of a tensile/compressive dynamic fatigue testing stage.It can be used for...This paper introduces a modified control cir- cuit of static tensile stage of Cambridge S-200 SEM.The function of the stage is extended to that of a tensile/compressive dynamic fatigue testing stage.It can be used for studying fatigue micro characteristic and crack growth.Direct observa- tions of small crack growth behaviour were carried out under the SEM with modified stage.Results showed the various stages in the development of a crack.展开更多
Cognitive scientists often use probabilistic equations to model human behavior in ambiguous situations. How, where, and even if such probabilities are represented in the human brain remains largely unknown. Here, we m...Cognitive scientists often use probabilistic equations to model human behavior in ambiguous situations. How, where, and even if such probabilities are represented in the human brain remains largely unknown. Here, we manipulated the probability of simple bottle-pouring action based on two considerations, the relative fullness of two glasses and the relative distance between the two glasses and the bottle. Whole brain functional magnetic resonance imaging was used to measure brain activity while participants viewed probable and improbable pouring actions. Improbable actions elicited increased activity in the theory of mind (ToM) network, commonly found active when trying to grasp the intentions of others, whereas probable actions elicited increased activity in the human mirror neuron system (hMNS) and areas associated with mental imagery and memory. These data provide novel insight into the brain mechanisms humans use to distinguish between high and low-probability actions.展开更多
Understanding the current and future stability of Antarctica’s ice shelves is critical for assessing the potential for rapid sea level rise emanating from Antarctica’s marine ice sheets.The acceleration in ocean-dri...Understanding the current and future stability of Antarctica’s ice shelves is critical for assessing the potential for rapid sea level rise emanating from Antarctica’s marine ice sheets.The acceleration in ocean-driven mass loss from the West Antarctic Ice Sheet(Shepherd et al.,2018)is one such focus for intense research interest.The scale and urgency in understanding ocean-driven Antarctic mass loss motivates better integration and cooperation between modelers and observational展开更多
An observing method for stator flux and rotor flux is presented. Based on the proposed flux observing method, a novel speed estimator has been designed. At last, the speed estimator combined with the flux observing is...An observing method for stator flux and rotor flux is presented. Based on the proposed flux observing method, a novel speed estimator has been designed. At last, the speed estimator combined with the flux observing is applied in the direct torque control system without speed sensor. The simulation results show that these methods can improve the accuracy of speed observing and the low speed performance of direct torque control system, and strengthen the robustness of system.展开更多
We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation O...We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S.展开更多
As a reducing salt,sodium sulfite could deprive oxygen in solution,which could mimic hypoxic stress in Caenorhabditis elegans.In this study,the wildtype Escherichia coli strain MG1655 was used to examine the inhibitio...As a reducing salt,sodium sulfite could deprive oxygen in solution,which could mimic hypoxic stress in Caenorhabditis elegans.In this study,the wildtype Escherichia coli strain MG1655 was used to examine the inhibition of sodium sulfite-induced hypoxia by observing the bacterial growth curves.展开更多
基金supported by the National Science and Technology Innovation 2030 Grant No. (2021ZD0200104)National Nature Science Foundation of China (81871082).
文摘Cells are the basic unit of human organs that are not fully understood.The revolutionary advancements of optical imaging alowed us to observe single cells in whole organs,revealing the complicated composition of cells with spatial information.Therefore,in this review,we revisit the principles of optical contrast related to those biomolecules and the optical techniques that transform optical contrast into detectable optical signals.Then,we describe optical imaging to achieve threedimensional spatial discrimination for biological tisutes.Due to the milky appearance of tissues,the spatial information burred deep in the whole organ.Fortunately,strategies developed in the last decade could circumvent this issue and lead us into a new era of investigation of the cells with their original spatial information.
文摘Voluntary observing ship (VOS) observations are international obligations that must be fulfilled by China. Currently, the number of Chinese VOSs is showing a decreasing trend, which has decreased from more than one hundred ships in the past to the current number of thirty something ships. Moreover, the observation capabilities have many existing problems, such as relatively outdated observation measures, simple observation parameters, and lack of observation data. Fundamentally speaking, the operation mechanism of VOSs lacks effective systematic assurance and protection. Consequently, these VOSs are unable to have sufficient operational capabilities and cannot effectively fulfill their international obligations.
文摘The Integrated Marine Observing System [IMOS] is an Australian national program for observing the oceans around Australia. As one of its important nodes, the New South Wales Integrated Marine Observing System (NSW-IMOS] aims to provide more accurate descriptions of the East Australian Current [EAC]. The purpose of this paper is to evaluate the potential economic benefits from NSW-IMOS. Six related sectors which can potentially be among its main beneficiaries are considered: beach recreation, commercial fishing, recreational fishing, recreational boating, natural hazard predictions, and oil spill mitigation. The 1% constant percentage increase evaluation method is used to estimate the potential economic benefits to these six beneficiaries. By using this method, our study shows that the total potential economic benefit for these sectors is estimated to be $ 6.07 million per year. We consider that this is indicative but not conclusive in demonstrating some of the potential economic benefits that can be provided from information gathered by NSW-IMOS facilities. We conclude with further evaluative approaches that could be used to provide more accurate estimates of potential economic benefits.
基金supported by the National Science and Technology Support Plan of China (2015BAD07B02)
文摘Detecting near-surface soil freeze-thaw cycles in high-altitude cold regions is important for understanding the Earth's surface system, but such studies are rare. In this study, we detected the spatial-temporal variations in near-surface soil freeze-thaw cycles in the source region of the Yellow River(SRYR) during the period 2002–2011 based on data from the Advanced Microwave Scanning Radiometer for the Earth Observing System(AMSR-E). Moreover, the trends of onset dates and durations of the soil freeze-thaw cycles under different stages were also analyzed. Results showed that the thresholds of daytime and nighttime brightness temperatures of the freeze-thaw algorithm for the SRYR were 257.59 and 261.28 K, respectively. At the spatial scale, the daily frozen surface(DFS) area and the daily surface freeze-thaw cycle surface(DFTS) area decreased by 0.08% and 0.25%, respectively, and the daily thawed surface(DTS) area increased by 0.36%. At the temporal scale, the dates of the onset of thawing and complete thawing advanced by 3.10(±1.4) and 2.46(±1.4) days, respectively; and the dates of the onset of freezing and complete freezing were delayed by 0.9(±1.4) and 1.6(±1.1) days, respectively. The duration of thawing increased by 0.72(±0.21) day/a and the duration of freezing decreased by 0.52(±0.26) day/a. In conclusion, increases in the annual minimum temperature and winter air temperature are the main factors for the advanced thawing and delayed freezing and for the increase in the duration of thawing and the decrease in the duration of freezing in the SRYR.
基金The National Natural Science Foundation of China under contract No.41506090the National Key Research and Development Program of China under contract No.2016YFA0601400the Key Laboratory of Global Change and Marine-Atmospheric Chemistry under contract No.GCMAC1408
文摘Knowledge of the surface ocean dynamics and the underlying controlling mechanisms is critical to understand the natural variability of the ocean and to predict its future response to climate change.In this paper,we highlight the potential use of Volunteer Observing Ship(VOS),as carrier for automatic underway measuring system and as platform for sample collection,to enhance the observing capacity for the surface ocean.We review the concept,history,present status and future development of the VOS-based in situ surface ocean observation.The successes of various VOS projects demonstrate that,along with the rapid advancing sensor techniques,VOS is able to improve the temporal resolution and spatial coverage of the surface ocean observation in a highly cost-effective manner.A sustained and efficient marine monitoring system in the future should integrate the advantages of various observing platforms including VOS.
基金Supported by the Natural Science Foundation of Jiangsu Province under Grant No BK20130424the National Natural Science Foundation of China under Grant No 11547047
文摘The combination of spin-orbit coupling (SOC) and in-plane Zeeman field breaks time-reversal and inversion symmetries of Fermi gases and becomes a popular way to produce single plane wave Fulde-Ferrell (FF) superfluid. However, atom loss and heating related to SOC have impeded the successful observation of FF state until now. In this work, we propose the realization of spin-balanced FF superfluid in a honeycomb lattice without SOC and the Zeeman field. A key ingredient of our scheme is generating complex hopping terms in original honeycomb lattices by periodical driving. In our model the ground state is always the FF state, thus the experimental observation has no need of fine tuning. The other advantages of our scheme are its simplicity and feasibility, and thus may open a new route for observing FF superfluids.
基金supported by the National Natural Science Foundation of China(Nos.41606112,61103196,61379127,61379128)the National High Technology Research and Development Program 863(No.2013AA09A506)
文摘With the newly proposed Global Ocean Observing Integration, ocean observing scope has been expanded from the region to the global, therefore the need of large-scale ocean observing system integration has become more and more urgent. Currently, ocean observing systems enabled ocean sensor networks are commonly developed by different organizations using specific technologies and platforms, which brings several challenges in ocean observing instrument (OOI) access and ocean observing system seamless integration. Furthermore, the development of ocean observing systems often suffers from low efficiency due to the complex prograrmning and debugging process. To solve these problems, a novel model, Complex Virtual Instrument (CVI) Model, is proposed. The model provides formal definitions on observing instrument description file, CVI description file, model calculation method, development model and interaction standard. In addition, this model establishes mathematical expressions of two model calculation operations, meanwhile builds the mapping relationship between observing instrument description file and CVI description file. The CVI based on the new model can achieve automatic access to different OOIs, seamless integration and communication for heterogeneous environments, and further implement standardized data access and management for the global unified ocean observing network. Throughout the development, integration and application of such CVI, the rationality and feasibility of the model have been evaluated. The results confirm that the proposed model can effectively implement heterogeneous system integration, improve development efficiency, make full usage of reusable components, reduce development cost, and enhance overall software system quality. We believe that our new model has great significance to promote the large-scale ocean observing system integration.
基金supported by China(China Research Institute of Radiowave Propagation)Finland(Suomen Akatemia of Finland)+3 种基金Japan(the National Institute of Polar Research of Japan and Institutefor Space-Earth Environmental Research at Nagoya University)Norway(Norges Forkningsrad of Norway)Sweden(the Swedish Research Council)the UK(the Natural Environment Research Council)
文摘The observation of ultra high frequency radar during an ionospheric experiment carrying out at the European Incoherent Scatter Scientific Association, demonstrates a systematic variation in the altitude of the pump enhanced ion line, which is quite remarkably dependent on the pump frequency, that is, when the pump frequency sweeps above the fifth gyroharrnonic, the altitude of the enhanced ion line is ~3 to ~6 kin lower than that at the pump frequency very close to the fifth gyroharmonic. The analysis shows that the systematic variation in the altitude of the pump enhanced ion line is principally dependent on the enhanced electron temperature, although the changes in the profile of the electron density brought about by the ionospheric heating are not independent of those systematic altitude variations.
文摘Juniperus excelsa subsp.polycarpos,(Persian juniper),is found in northeast Iran.In this study,the relationship between ground cover and vegetation indices have been investigated using remote sensing data for a Persian juniper forest.Multispectral data were analyzed based on the Advanced Visible and Near Infrared Radiometer type 2 and panchromatic data obtained by the Panchromatic Remote-sensing Instrument for Stereo Mapping sensors,both on board the advanced land observing satellite(ALOS).The ground cover was calculated using field survey data from 25 sub-sample plots and the vegetation indices were derived with 595 maximum filtering algorithm from ALOS data.R2 values were calculated for the normalized difference vegetation index(NDVI)and various soil-adjusted vegetation indices(SAVI)with soilbrightness-dependent correction factors equal to 1 and 0.5,a modified SAVI(MSAVI)and an optimized SAVI(OSAVI).R2 values for the NDVI,MSAVI,OSAVI,SAVI(1),and SAVI(0.5)were 0.566,0.545,0.619,0.603,and 0.607,respectively.Total ratio vegetation index for arid and semi-arid regions based on spectral wavelengths of ALOS data with an R2 value 0.633 was considered.Results of the current study will be useful for forest inventories in arid and semi-arid regions in addition to assisting decisionmaking for natural resource managers.
基金Key Science and Technology Project of the Shanghai Committee of Science and Technology, China (No.06dz1200921)Major Basic Research Project of the Shanghai Committee of Science and Technology(No.08JC1400100)+1 种基金Shanghai Talent Developing Foundation, China(No.001)Specialized Foundation for Excellent Talent of Shanghai,China
文摘There are a number of dirty data in observation data set derived from integrated ocean observing network system. Thus, the data must be carefully and reasonably processed before they are used for forecasting or analysis. This paper proposes a data pre-processing model based on intelligent algorithms. Firstly, we introduce the integrated network platform of ocean observation. Next, the preprocessing model of data is presemed, and an imelligent cleaning model of data is proposed. Based on fuzzy clustering, the Kohonen clustering network is improved to fulfill the parallel calculation of fuzzy c-means clustering. The proposed dynamic algorithm can automatically f'md the new clustering center with the updated sample data. The rapid and dynamic performance of the model makes it suitable for real time calculation, and the efficiency and accuracy of the model is proved by test results through observation data analysis.
文摘The experience of the mankind in studying the planet of our own, is long and the progress is accelerated. From the numerous geographic adventures organized in the past thousand years came only the brief knowledge of the outline of the land and ocean; with the scientific explorations and topographic mapping activities done in the 300-plus years that followed, only about 30% of the land got mapped. But things have been changed greatly since the beginning of the century, when the air planes were put into use for mapping: up to 1950’s, the mapped areas had gone up to 70%; From 1957, a series of resource and environment satellites have been launched one after another,observing the globe, giving coverage of it and providing endlessly varieties of information about the seas and the lands day and night.
文摘THE walls at Jianguomen Station give you a hefty clue of what attractions are in the area before you’ve even exited the train.In common with many other subway stations in Beijing,you can get a pretty good idea of what famous monuments are close by,simply by looking at the tiles or mosaics that decorate the platforms.
基金National Meteorological Information Centerfunded by the National Natural Science Foundation of China (Grant No. 40775021)+2 种基金the National Key Basic Research and Development Project of China (Grant No. 2004CB418305)National 863 plans project "Re-search on Application System of Airborne Radar"the meteorological project "Tropical West Pacific Ocean Observation and Predictability"
文摘Millimeter-wavelength radar has proved to be an effective instrument for cloud observation and research. In this study, 8-mm-wavelength cloud radar (MMCR) with Doppler and polarization capabilities was used to investigate cloud dynamics in China for the first time. Its design, system specifications, calibration, and application in measuring clouds associated with typhoon are discussed in this article. The cloud radar measurements of radar reflectivity (Z), Doppler velocity (Vr), velocity spectrum width (Sw) and the depolar-ization ratio (LDR) at vertical incidence were used to analyze the microphysical and dynamic processes of the cloud system and precipitation associated with Typhoon Nuri, which occurred in southern China in August 2008. The results show the reflectivity observed using MMCR to be consistent with the echo height and the melting-layer location data obtained by the nearby China S-band new-generation weather radar (SA), but the Ka-band MMCR provided more detailed structural information about clouds and weak precipitation data than did the SA radar. The variation of radar reflectivity and LDR in vertical structure reveals the transformation of particle phase from ice to water. The vertical velocity and velocity spectrum width of MMCR observations indicate an updraft and strong turbulence in the stratiform cloud layer. MMCR provides a valuable new technology for meteorological research in China.
文摘Quantitative precipitation estimation and rainfall monitoring based on meteorological data, potentially provides continuous, high-resolution and large-coverage data, are of high practical use: Think of hydrogeological risk management, hydroelectric power, road and tourism. Both conventional long-range radars and rain-gauges suffer from measurement errors and difficulties in precipitation estimation. For efficient monitoring operation of localized rain events of limited extension and of small basins of interest, an unrealistic extremely dense rain gauge network should be needed. Alternatively C-band or S-band meteorological long range radars are able to monitor rain fields over wide areas, however with not enough space and time resolution, and with high purchase and maintenance costs. Short-range X-band radars for rain monitoring can be a valid compromise solution between the two more common rain measurement and observation instruments. Lots of scientific efforts have already focused on radar-gauge adjustment and quantitative precipitation estimation in order to improve the radar measurement techniques. After some considerations about long range radars and gauge network, this paper presents instead some examples of how X-band mini radars can be very useful for the observation of rainfall events and how they can integrate and supplement long range radars and rain gauge networks. Three case studies are presented: A very localized and intense event, a rainfall event with high temporal and spatial variability and the employ of X-band mini radar in a mountainous region with narrow valleys. The adaptability of such radar devoted to monitor rain is demonstrated.
文摘This paper introduces a modified control cir- cuit of static tensile stage of Cambridge S-200 SEM.The function of the stage is extended to that of a tensile/compressive dynamic fatigue testing stage.It can be used for studying fatigue micro characteristic and crack growth.Direct observa- tions of small crack growth behaviour were carried out under the SEM with modified stage.Results showed the various stages in the development of a crack.
文摘Cognitive scientists often use probabilistic equations to model human behavior in ambiguous situations. How, where, and even if such probabilities are represented in the human brain remains largely unknown. Here, we manipulated the probability of simple bottle-pouring action based on two considerations, the relative fullness of two glasses and the relative distance between the two glasses and the bottle. Whole brain functional magnetic resonance imaging was used to measure brain activity while participants viewed probable and improbable pouring actions. Improbable actions elicited increased activity in the theory of mind (ToM) network, commonly found active when trying to grasp the intentions of others, whereas probable actions elicited increased activity in the human mirror neuron system (hMNS) and areas associated with mental imagery and memory. These data provide novel insight into the brain mechanisms humans use to distinguish between high and low-probability actions.
文摘Understanding the current and future stability of Antarctica’s ice shelves is critical for assessing the potential for rapid sea level rise emanating from Antarctica’s marine ice sheets.The acceleration in ocean-driven mass loss from the West Antarctic Ice Sheet(Shepherd et al.,2018)is one such focus for intense research interest.The scale and urgency in understanding ocean-driven Antarctic mass loss motivates better integration and cooperation between modelers and observational
文摘An observing method for stator flux and rotor flux is presented. Based on the proposed flux observing method, a novel speed estimator has been designed. At last, the speed estimator combined with the flux observing is applied in the direct torque control system without speed sensor. The simulation results show that these methods can improve the accuracy of speed observing and the low speed performance of direct torque control system, and strengthen the robustness of system.
基金the National Natural Science Foundation of China(Grant Nos.41831073,42174196,and 42374205)the Project of Stable Support for Youth Team in Basic Research Field,Chinese Academy of Sciences(CAS+4 种基金Grant No.YSBR-018)the Informatization Plan of CAS(Grant No.CAS-WX2021PY-0101)the Youth Cross Team Scientific Research project of the Chinese Academy of Sciences(Grant No.JCTD-2021-10)the Open Research Project of Large Research Infrastructures of CAS titled“Study on the Interaction Between Low-/Mid-Latitude Atmosphere and Ionosphere Based on the Chinese Meridian Project.”This work was also supported in part by the Specialized Research Fund and the Open Research Program of the State Key Laboratory of Space Weather.
文摘We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S.
基金supported by the Air Force Characteristic Medical Center Youth Talent Program 22YXQN020。
文摘As a reducing salt,sodium sulfite could deprive oxygen in solution,which could mimic hypoxic stress in Caenorhabditis elegans.In this study,the wildtype Escherichia coli strain MG1655 was used to examine the inhibition of sodium sulfite-induced hypoxia by observing the bacterial growth curves.