期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于OC-Seislet变换的海洋涌浪噪声衰减方法 被引量:5
1
作者 勾福岩 刘财 +2 位作者 刘洋 王博 冯晅 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2015年第3期962-970,共9页
在海上地震资料采集过程中,涌浪噪声是一种常见的噪声干扰,这类噪声一般表现为低频、强能量、长周期,使用一般的方法很难在去噪的同时达到信号保真的效果。笔者针对该噪声的特征,选取了基于波动方程炮检距连续(offset continuation,OC)... 在海上地震资料采集过程中,涌浪噪声是一种常见的噪声干扰,这类噪声一般表现为低频、强能量、长周期,使用一般的方法很难在去噪的同时达到信号保真的效果。笔者针对该噪声的特征,选取了基于波动方程炮检距连续(offset continuation,OC)算子的OC-Seislet变换方法进行消噪处理;该方法应用OC算子来表征复杂波场,对含噪声数据进行压缩,在变换域通过软阈值处理实现信噪分离,再将结果反变换到数据域,从而达到去除涌浪噪声的目的。通过对模型数据和实际数据的处理,验证了OC-Seislet变换方法能够在去除原始数据中涌浪噪声的同时,最大程度地保护复杂构造下的地震波信息。 展开更多
关键词 炮检距连续算子 oc-seislet变换 涌浪噪声 软阈值
下载PDF
Complex seismic wavefi eld interpolation based on the Bregman iteration method in the sparse transform domain 被引量:2
2
作者 勾福岩 刘财 +2 位作者 刘洋 冯晅 崔芳姿 《Applied Geophysics》 SCIE CSCD 2014年第3期277-288,350,351,共14页
In seismic prospecting, fi eld conditions and other factors hamper the recording of the complete seismic wavefi eld; thus, data interpolation is critical in seismic data processing. Especially, in complex conditions, ... In seismic prospecting, fi eld conditions and other factors hamper the recording of the complete seismic wavefi eld; thus, data interpolation is critical in seismic data processing. Especially, in complex conditions, prestack missing data affect the subsequent highprecision data processing workfl ow. Compressive sensing is an effective strategy for seismic data interpolation by optimally representing the complex seismic wavefi eld and using fast and accurate iterative algorithms. The seislet transform is a sparse multiscale transform well suited for representing the seismic wavefield, as it can effectively compress seismic events. Furthermore, the Bregman iterative algorithm is an efficient algorithm for sparse representation in compressive sensing. Seismic data interpolation methods can be developed by combining seismic dynamic prediction, image transform, and compressive sensing. In this study, we link seismic data interpolation and constrained optimization. We selected the OC-seislet sparse transform to represent complex wavefields and used the Bregman iteration method to solve the hybrid norm inverse problem under the compressed sensing framework. In addition, we used an H-curve method to choose the threshold parameter in the Bregman iteration method. Thus, we achieved fast and accurate reconstruction of the seismic wavefi eld. Model and fi eld data tests demonstrate that the Bregman iteration method based on the H-curve norm in the sparse transform domain can effectively reconstruct missing complex wavefi eld data. 展开更多
关键词 Bregman iteration oc-seislet transform seismic data interpolation compressive sensing H-curve norm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部