期刊文献+
共找到302篇文章
< 1 2 16 >
每页显示 20 50 100
Arabic Optical Character Recognition:A Review 被引量:1
1
作者 Salah Alghyaline 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期1825-1861,共37页
This study aims to review the latest contributions in Arabic Optical Character Recognition(OCR)during the last decade,which helps interested researchers know the existing techniques and extend or adapt them accordingl... This study aims to review the latest contributions in Arabic Optical Character Recognition(OCR)during the last decade,which helps interested researchers know the existing techniques and extend or adapt them accordingly.The study describes the characteristics of the Arabic language,different types of OCR systems,different stages of the Arabic OCR system,the researcher’s contributions in each step,and the evaluationmetrics for OCR.The study reviews the existing datasets for the Arabic OCR and their characteristics.Additionally,this study implemented some preprocessing and segmentation stages of Arabic OCR.The study compares the performance of the existing methods in terms of recognition accuracy.In addition to researchers’OCRmethods,commercial and open-source systems are used in the comparison.The Arabic language is morphologically rich and written cursive with dots and diacritics above and under the characters.Most of the existing approaches in the literature were evaluated on isolated characters or isolated words under a controlled environment,and few approaches were tested on pagelevel scripts.Some comparative studies show that the accuracy of the existing Arabic OCR commercial systems is low,under 75%for printed text,and further improvement is needed.Moreover,most of the current approaches are offline OCR systems,and there is no remarkable contribution to online OCR systems. 展开更多
关键词 Arabic optical character recognition(ocr) Arabic ocr software Arabic ocr datasets Arabic ocr evaluation
下载PDF
Review of Optical Character Recognition for Power System Image Based on Artificial Intelligence Algorithm
2
作者 Xun Zhang Wanrong Bai Haoyang Cui 《Energy Engineering》 EI 2023年第3期665-679,共15页
Optical Character Recognition(OCR)refers to a technology that uses image processing technology and character recognition algorithms to identify characters on an image.This paper is a deep study on the recognition effe... Optical Character Recognition(OCR)refers to a technology that uses image processing technology and character recognition algorithms to identify characters on an image.This paper is a deep study on the recognition effect of OCR based on Artificial Intelligence(AI)algorithms,in which the different AI algorithms for OCR analysis are classified and reviewed.Firstly,the mechanisms and characteristics of artificial neural network-based OCR are summarized.Secondly,this paper explores machine learning-based OCR,and draws the conclusion that the algorithms available for this form of OCR are still in their infancy,with low generalization and fixed recognition errors,albeit with better recognition effect and higher recognition accuracy.Finally,this paper explores several of the latest algorithms such as deep learning and pattern recognition algorithms.This paper concludes that OCR requires algorithms with higher recognition accuracy. 展开更多
关键词 optical character recognition artificial intelligence power system image artificial neural network machine leaning deep learning
下载PDF
Optical Character Recognition Functionality Introduction in Mobile Application for Car Diary
3
作者 Ioannis Patias 《Journal of Electrical Engineering》 2017年第6期335-339,共5页
The purpose of the paper is to develop a mobile Android application--"Car Log" that gives to users the ability to track all the costs for a vehicle and the ability to add fuel cost data by taking a photo of the cash... The purpose of the paper is to develop a mobile Android application--"Car Log" that gives to users the ability to track all the costs for a vehicle and the ability to add fuel cost data by taking a photo of the cash receipt from the respective gas station where the charging was performed. OCR (optical character recognition) is the conversion of images of typed, handwritten or printed text into machine-encoded text. Once we have the text machine-encoded we can further use it in machine processes, like translation, or extracted, meaning text-to-speech transformed, helping people in simple everyday tasks. Users of the application will be able to enter other completely different costs grouped into categories and other charges. Car Log application quickly and easily can visualize, edit and add different costs for a ear. It also supports the ability to add multiple profiles, by entering data for all ears in a single family, for example, or a small business. The test results are positive thus we intend to further develop a cloud ready application. 展开更多
关键词 optical character recognition mobile application car diary.
下载PDF
Optimised CNN Architectures for Handwritten Arabic Character Recognition
4
作者 Salah Alghyaline 《Computers, Materials & Continua》 SCIE EI 2024年第6期4905-4924,共20页
Handwritten character recognition is considered challenging compared with machine-printed characters due to the different human writing styles.Arabic is morphologically rich,and its characters have a high similarity.T... Handwritten character recognition is considered challenging compared with machine-printed characters due to the different human writing styles.Arabic is morphologically rich,and its characters have a high similarity.The Arabic language includes 28 characters.Each character has up to four shapes according to its location in the word(at the beginning,middle,end,and isolated).This paper proposed 12 CNN architectures for recognizing handwritten Arabic characters.The proposed architectures were derived from the popular CNN architectures,such as VGG,ResNet,and Inception,to make them applicable to recognizing character-size images.The experimental results on three well-known datasets showed that the proposed architectures significantly enhanced the recognition rate compared to the baseline models.The experiments showed that data augmentation improved the models’accuracies on all tested datasets.The proposed model outperformed most of the existing approaches.The best achieved results were 93.05%,98.30%,and 96.88%on the HIJJA,AHCD,and AIA9K datasets. 展开更多
关键词 optical character recognition(ocr) handwritten arabic characters deep learning
下载PDF
A Fast Recognition System for Isolated Printed Characters Using Center of Gravity and Principal Axis 被引量:1
5
作者 Ahmed M. Shaffie Galal A. Elkobrosy 《Applied Mathematics》 2013年第9期1313-1319,共7页
The purpose of this paper is to propose a new multi stage algorithm for the recognition of isolated characters. It was similar work done before using only the center of gravity (This paper is extended version of “A f... The purpose of this paper is to propose a new multi stage algorithm for the recognition of isolated characters. It was similar work done before using only the center of gravity (This paper is extended version of “A fast recognition system for isolated printed characters using center of gravity”, LAP LAMBERT Academic Publishing 2011, ISBN: 978-38465-0002-6), but here we add using principal axis in order to make the algorithm rotation invariant. In my previous work which is published in LAP LAMBERT, I face a big problem that when the character is rotated I can’t recognize the character. So this adds constrain on the document to be well oriented but here I use the principal axis in order to unify the orientation of the character set and the characters in the scanned document. The algorithm can be applied for any isolated character such as Latin, Chinese, Japanese, and Arabic characters but it has been applied in this paper for Arabic characters. The approach uses normalized and isolated characters of the same size and extracts an image signature based on the center of gravity of the character after making the character principal axis vertical, and then the system compares these values to a set of signatures for typical characters of the set. The system then provides the closeness of match to all other characters in the set. 展开更多
关键词 ocr Pattern recognition CONFUSION Matrix Image SIGNATURE Word Segmentation character FRAGMENTATION
下载PDF
CHARACTER DETECTION AND RECOGNITION SYSTEM OF BEER BOTTLES 被引量:1
6
作者 Shen Bangxing Wu Wenjun +2 位作者 Zhang Yepeng Shen Gang Yang Liangen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第3期467-469,共3页
An optical imaging system and a configuration characteristic algorithm are presented to reduce the difficulties in extracting intact characters image with weak contrast, in recognizing characters on fast moving beer b... An optical imaging system and a configuration characteristic algorithm are presented to reduce the difficulties in extracting intact characters image with weak contrast, in recognizing characters on fast moving beer bottles. The system consists of a hardware subsystem, including a rotating device, CCD, 16 mm focus lens, a frame grabber card, a penetrating lighting and a computer, and a software subsystem. The software subsystem performs pretreatment, character segmentation and character recognition. In the pretreatment, the original image is filtered with preset threshold to remove isolated spots. Then the horizontal projection and the vertical projection are used respectively to retrieve the character segmentation. Subsequently, the configuration characteristic algorithm is applied to recognize the characters. The experimental results demonstrate that this system can recognize the characters on beer bottles accurately and effectively; the algorithm is proven fast, stable and robust, making it suitable in the industrial environment. 展开更多
关键词 optical imaging system Raised character recognition Configuration characteristic algorithm
下载PDF
Support Vector Machine Based Handwritten Hindi Character Recognition and Summarization
7
作者 Sunil Dhankhar Mukesh Kumar Gupta +3 位作者 Fida Hussain Memon Surbhi Bhatia Pankaj Dadheech Arwa Mashat 《Computer Systems Science & Engineering》 SCIE EI 2022年第10期397-412,共16页
In today’s digital era,the text may be in form of images.This research aims to deal with the problem by recognizing such text and utilizing the support vector machine(SVM).A lot of work has been done on the English l... In today’s digital era,the text may be in form of images.This research aims to deal with the problem by recognizing such text and utilizing the support vector machine(SVM).A lot of work has been done on the English language for handwritten character recognition but very less work on the under-resourced Hindi language.A method is developed for identifying Hindi language characters that use morphology,edge detection,histograms of oriented gradients(HOG),and SVM classes for summary creation.SVM rank employs the summary to extract essential phrases based on paragraph position,phrase position,numerical data,inverted comma,sentence length,and keywords features.The primary goal of the SVM optimization function is to reduce the number of features by eliminating unnecessary and redundant features.The second goal is to maintain or improve the classification system’s performance.The experiment included news articles from various genres,such as Bollywood,politics,and sports.The proposed method’s accuracy for Hindi character recognition is 96.97%,which is good compared with baseline approaches,and system-generated summaries are compared to human summaries.The evaluated results show a precision of 72%at a compression ratio of 50%and a precision of 60%at a compression ratio of 25%,in comparison to state-of-the-art methods,this is a decent result. 展开更多
关键词 Support vector machine(SVM) optimization PRECISION Hindi character recognition optical character recognition(ocr) automatic summarization and compression ratio
下载PDF
Instance Segmentation of Characters Recognized in Palmyrene Aramaic Inscriptions
8
作者 Adéla Hamplová Alexey Lyavdansky +3 位作者 TomášNovák Ondrej Svojše David Franc Arnošt Veselý 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2869-2889,共21页
This study presents a single-class and multi-class instance segmentation approach applied to ancient Palmyrene inscriptions,employing two state-of-the-art deep learning algorithms,namely YOLOv8 and Roboflow 3.0.The go... This study presents a single-class and multi-class instance segmentation approach applied to ancient Palmyrene inscriptions,employing two state-of-the-art deep learning algorithms,namely YOLOv8 and Roboflow 3.0.The goal is to contribute to the preservation and understanding of historical texts,showcasing the potential of modern deep learning methods in archaeological research.Our research culminates in several key findings and scientific contributions.We comprehensively compare the performance of YOLOv8 and Roboflow 3.0 in the context of Palmyrene character segmentation—this comparative analysis mainly focuses on the strengths and weaknesses of each algorithm in this context.We also created and annotated an extensive dataset of Palmyrene inscriptions,a crucial resource for further research in the field.The dataset serves for training and evaluating the segmentation models.We employ comparative evaluation metrics to quantitatively assess the segmentation results,ensuring the reliability and reproducibility of our findings and we present custom visualization tools for predicted segmentation masks.Our study advances the state of the art in semi-automatic reading of Palmyrene inscriptions and establishes a benchmark for future research.The availability of the Palmyrene dataset and the insights into algorithm performance contribute to the broader understanding of historical text analysis. 展开更多
关键词 optical character recognition instance segmentation Palmyrene ancient languages computer vision
下载PDF
Libyan Licenses Plate Recognition Using Template Matching Method 被引量:1
9
作者 Alla A. El. Senoussi Abdella 《Journal of Computer and Communications》 2016年第7期62-71,共10页
License plate recognition (LPR) applies image processing and character recognition technology to identify vehicles by automatically reading their license plates. The work presented in this paper aims to create a compu... License plate recognition (LPR) applies image processing and character recognition technology to identify vehicles by automatically reading their license plates. The work presented in this paper aims to create a computer vision system capable of taking real-time input image from a static camera and identifying the license plate from extracted image. This problem is examined in two stages: First the license plate region detection and extraction from background and plate segmentation to sub-images, and second the character recognition stage. The method used for the license plate region detection is based on the assumption that the license plate area is a high concentration of smaller details, making it a region of high intensity of edges. The Sobel filter and their vertical and horizontal projections are used to identify the plate region. The result of testing this stage was an accuracy of 67.5%. The final stage of the LPR system is optical character recognition (OCR). The method adopted for this stage is based on template matching using correlation. Testing the performance of OCR resulted in an overall recognition rate of 87.76%. 展开更多
关键词 License Plate recognition optical character recognition Computer Vision System
下载PDF
ERCS: An Efficient and Robust Card Recognition System for Camera-Based Image
10
作者 Zhonghong Ou Baiqiao Xiong +1 位作者 Fenrui Xiao Meina Song 《China Communications》 SCIE CSCD 2020年第12期247-264,共18页
Cards Recognition Systems,(CRSs)are representative computer vision-based applications.They have a broad range of usage scenarios.For example,they can be used to recognize images containing business cards,personal iden... Cards Recognition Systems,(CRSs)are representative computer vision-based applications.They have a broad range of usage scenarios.For example,they can be used to recognize images containing business cards,personal identification cards,and bank cards etc.Even though CRSs have been studied for many years,it is still difficult to recognize cards in camera-based images taken by ordinary devices,e.g.,mobile phones.Diversity of viewpoints and complex backgrounds in the images make the recognition task challenging.Existing systems employing traditional image processing schemes are not robust to varied environment,and are inefficient in dealing with natural images,e.g.,taken by mobile phones.To tackle the problem,we propose a novel framework for card recognition by employing a Convolutional Neutral Network(CNN)based approach.The system localizes the foreground of the image by utilizing a Fully Convolutional Network(FCN).With the help of the foreground map,the system localizes the corners of the card region and employs perspective transformation to alleviate the effects from distortion.Text lines in the card region are detected and recognized by utilizing CNN and Long Short Term Memory,(LSTM).To evaluate the proposed scheme,we collect a large dataset which contains 4,065 images in a variety of shooting scenarios.Experimental results demonstrate the efficacy of the proposed scheme.Specifically,it is able to achieve an accuracy of 90.62%in the end-toend test,outperforming the state-of-the-art. 展开更多
关键词 card localization card recognition optical character recognition CNN
下载PDF
Baseline Isolated Printed Text Image Database for Pashto Script Recognition
11
作者 Arfa Siddiqu Abdul Basit +3 位作者 Waheed Noor Muhammad Asfandyar Khan M.Saeed H.Kakar Azam Khan 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期875-885,共11页
The optical character recognition for the right to left and cursive languages such as Arabic is challenging and received little attention from researchers in the past compared to the other Latin languages.Moreover,the... The optical character recognition for the right to left and cursive languages such as Arabic is challenging and received little attention from researchers in the past compared to the other Latin languages.Moreover,the absence of a standard publicly available dataset for several low-resource lan-guages,including the Pashto language remained a hurdle in the advancement of language processing.Realizing that,a clean dataset is the fundamental and core requirement of character recognition,this research begins with dataset generation and aims at a system capable of complete language understanding.Keeping in view the complete and full autonomous recognition of the cursive Pashto script.The first achievement of this research is a clean and standard dataset for the isolated characters of the Pashto script.In this paper,a database of isolated Pashto characters for forty four alphabets using various font styles has been introduced.In order to overcome the font style shortage,the graphical software Inkscape has been used to generate sufficient image data samples for each character.The dataset has been pre-processed and reduced in dimensions to 32×32 pixels,and further converted into the binary format with a black background and white text so that it resembles the Modified National Institute of Standards and Technology(MNIST)database.The benchmark database is publicly available for further research on the standard GitHub and Kaggle database servers both in pixel and Comma Separated Values(CSV)formats. 展开更多
关键词 Text-image database optical character recognition(ocr) pashto isolated characters visual recognition autonomous language understanding deep learning convolutional neural network(CNN)
下载PDF
基于OCR和Pydicom的PACS数据库数据丢失后的应急与恢复研究
12
作者 朱贵鲜 李桃 +1 位作者 俞磊 丁如一 《中国医疗设备》 2024年第7期74-78,89,共6页
目的在影像归档和通信系统(Picture Archiving and Communication System,PACS)数据库文件丢失或损坏后,实现影像资料和PDF报告关键信息的快速识别和重组,供患者回诊使用。方法利用基于深度学习的光学字符识别技术和Pydicom技术分别读取... 目的在影像归档和通信系统(Picture Archiving and Communication System,PACS)数据库文件丢失或损坏后,实现影像资料和PDF报告关键信息的快速识别和重组,供患者回诊使用。方法利用基于深度学习的光学字符识别技术和Pydicom技术分别读取PDF和DCOM文件中的基本信息,重新建立起患者、影像、报告三者之间的联系,并将关联数据写入数据库。结果经抽样验证,该方法识别同类图像精度的准确度、精准度及召回率均为100%,综合指标F1值为1,在不同组别独立样本间的识别精度表现出一致性。平均每份报告识别时间约为0.14 s(t=-1.005,P=0.315),说明不同组别独立样本间的识别时间表现出一致性。结论该方法的使用能有效缩短数据库故障后患者等待时长,能够在短时间内恢复医疗秩序,可用于PACS数据库数据丢失后的应急处置,也为PACS的数据整合提供依据,为医学影像数据恢复和数据整合提供一种新思路。 展开更多
关键词 光学字符识别 PACS数据 应急处置 深度学习 DCOM信息提取 图像文字识别
下载PDF
基于OCR模型的医疗救治装备数据采集平台设计与实现
13
作者 房珂宇 张鑫 +2 位作者 王钧钧 秦晓丽 陈平 《医疗卫生装备》 CAS 2024年第9期14-20,共7页
目的:设计一种基于光学字符识别(optical character recognition,OCR)模型的医疗救治装备数据采集平台,以实现应急灾害救援条件下医疗数据的自动化采集。方法:该平台以医疗物联网“感知—网络—平台”架构为基础构建。首先,选取Raspberr... 目的:设计一种基于光学字符识别(optical character recognition,OCR)模型的医疗救治装备数据采集平台,以实现应急灾害救援条件下医疗数据的自动化采集。方法:该平台以医疗物联网“感知—网络—平台”架构为基础构建。首先,选取Raspberry Pi 4B作为边缘节点,使用视频采集卡、摄像头、平板计算机等搭建硬件环境。其次,基于卷积循环神经网络(convolutional recurrent neural network,CRNN)优化OCR模型,通过软硬件协同方式实现医疗终端视频流处理与数据提取。最后,采用FineBI工具实现交互界面设计与数据库链接。结果:经实验验证,该平台的硬件环境可靠、稳定,优化后的OCR模型文本识别准确率提升,且采用该平台能够实现对医疗设备数据的快速、自动化采集。结论:采用该平台能够为医护人员提供全面、准确的医疗救治装备数据支撑,有利于提升医疗救治效率。 展开更多
关键词 ocr 应急医疗救援 医疗救治装备 数据采集
下载PDF
基于OCR模型的通信机房图片归档系统设计 被引量:2
14
作者 周延熙 《信息与电脑》 2024年第1期125-127,共3页
目前通信机房图片归档,人工操作占据了主导地位,然而这种方式存在效率低、易出错等缺陷。在此背景下,文章提出了一种基于光学字符识别(Optical Character Recognition,OCR)模型的通信机房图片归档系统。该系统通过自动识别图片中的文字... 目前通信机房图片归档,人工操作占据了主导地位,然而这种方式存在效率低、易出错等缺陷。在此背景下,文章提出了一种基于光学字符识别(Optical Character Recognition,OCR)模型的通信机房图片归档系统。该系统通过自动识别图片中的文字信息,分析图片所属的机房位置,进而按照机柜位置分类归档图片,实现自动化管理。经过测试,该系统的归档准确率达到了98%以上,显著提高了通信机房图片归档的效率。 展开更多
关键词 图片归档系统 光学字符识别(ocr) 通信机房
下载PDF
基于OCR技术的档案智能化收集方法研究
15
作者 张婷琳 陈祥本 +1 位作者 丁晔 张勇 《无线互联科技》 2024年第19期32-36,共5页
为实现档案信息的智能化管理,文章提出了一种轻量化的端到端档案智能化收集系统。首先采用轻量化的目标检测神经网络PP-PicoDet作为布局检测器,用于对档案材料的版面分析;然后采用SLANet深度学习神经网络进行表格的结构化识别;最后使用... 为实现档案信息的智能化管理,文章提出了一种轻量化的端到端档案智能化收集系统。首先采用轻量化的目标检测神经网络PP-PicoDet作为布局检测器,用于对档案材料的版面分析;然后采用SLANet深度学习神经网络进行表格的结构化识别;最后使用开源的Paddle OCR引擎进行文本识别。系统对表格识别的准确度达到75.8%,印刷体文本识别准确度达到98.3%,总推理时间少于0.85 s。该系统为实现端到端的档案资料智能化收集,提高档案资料整理的效率提出了一种有效解决方案。 展开更多
关键词 档案智能化收集 深度学习 光学字符识别 中文表格 手写体识别
下载PDF
基于深度学习OCR的医疗设备质控检测原始记录表智能识别系统的设计与应用
16
作者 林艺文 《中国医疗设备》 2024年第9期54-61,共8页
目的为了提高纸质医疗设备质控检测原始记录表手写数据的电子化录入效率,替代传统手工录入方式,实现手写检测数据的批量化自动录入。方法基于Python语言,开发一套基于深度学习光学字符识别(Optical Character Recognition,OCR)的医疗设... 目的为了提高纸质医疗设备质控检测原始记录表手写数据的电子化录入效率,替代传统手工录入方式,实现手写检测数据的批量化自动录入。方法基于Python语言,开发一套基于深度学习光学字符识别(Optical Character Recognition,OCR)的医疗设备质控检测原始数据记录表智能识别系统。深度学习OCR技术采用百度智能云OCR云服务,实现批量识别质控检测记录表电子图片,获取结构化的检测数据识别结果,并将识别结果以电子表格的形式导出。结果该系统已实现8种常用医疗设备质控检测原始记录表的智能化识别,经实验测试,8种质控检测记录表平均识别耗时为5.45 s,平均识别正确率为95.94%。系统应用后,医疗设备质控检测原始记录表手写数据电子化录入用时显著低于传统手工录入方式,且差异有统计学意义(P<0.001)。结论该系统识别速度快,识别正确率高,实现了医疗设备质控检测原始记录表批量化、智能化、电子化自动录入,节省了大量人力,提高了质控检测数据整理效率,为质控检测数据的深度分析打下坚实基础。 展开更多
关键词 医疗设备质控 表格识别 光学字符识别 深度学习 质控记录表
下载PDF
基于Tesseract-OCR的农村房地一体归档系统研究
17
作者 谭静 《黑龙江科学》 2024年第12期154-157,共4页
农村房地一体档案是对农村宅基地、集体建设用地使用权及房屋所有权进行确权登记的重要依据,将签章后的纸质档案转为电子档案进行存储对不动产权证书办理具有重要意义。由于目前缺乏能识别档案内容并进行分类归档的工具,设计并实现了基... 农村房地一体档案是对农村宅基地、集体建设用地使用权及房屋所有权进行确权登记的重要依据,将签章后的纸质档案转为电子档案进行存储对不动产权证书办理具有重要意义。由于目前缺乏能识别档案内容并进行分类归档的工具,设计并实现了基于Tesseract-OCR的农村房地一体归档系统。使用光学字符识别(Optical Character Recognition,OCR)对档案扫描图像进行识别,训练校正字库,提取图像中的文字信息,实现档案资料的分类存储。运用四川省某县的部分房地一体档案进行系统测验,应用结果表明,系统的识别归档准确率为96.5%,能满足房地一体档案归档需求,降低了人工识别归档的繁琐性,极大提高了归档的工作效率,提升了档案分类的准确度。 展开更多
关键词 光学字符识别 Tesseract 农村房地一体 登记档案 扫描图像
下载PDF
利用OCR识别技术实现视频中文字的提取 被引量:21
18
作者 陈义 李言俊 孙小炜 《计算机工程与应用》 CSCD 北大核心 2010年第10期180-183,共4页
为了在视频图像中进行字幕信息的实时提取,提出了一套简捷而有效的方法。首先进行文字事件检测,然后进行边缘检测、阈值计算和边缘尺寸限制,最后依据文字像素密度范围进一步滤去非文字区域的视频字幕,提出的叠加水平和垂直方向边缘的方... 为了在视频图像中进行字幕信息的实时提取,提出了一套简捷而有效的方法。首先进行文字事件检测,然后进行边缘检测、阈值计算和边缘尺寸限制,最后依据文字像素密度范围进一步滤去非文字区域的视频字幕,提出的叠加水平和垂直方向边缘的方法,加强了检测到的文字的边缘;对边缘进行尺寸限制过滤掉了不符合文字尺寸的边缘。应用投影法最终确定视频字幕所在区域。最后,利用OCR识别技术对提取出来的文字区域进行识别,完成视频中文字的提取。以上方法的结合保证了提出算法的正确率和鲁棒性。 展开更多
关键词 光学文字识别 文字事件检测 数字视频
下载PDF
新的基于统计熵功率的OCR算法及其DMCU实现 被引量:4
19
作者 吴永亮 万旺根 +1 位作者 钱锋 徐鸿玮 《计算机工程与应用》 CSCD 北大核心 2009年第1期195-197,共3页
使用摄像头进行文字识别最大的问题在于图像抖动。为了有效地消除图像抖动并正确实现文字识别,提出了一种基于统计熵功率的新的识别算法。这种方法将采集到的数据作为随机信号处理。实验证明,此算法计算复杂度低,识别率高,适用于低成本... 使用摄像头进行文字识别最大的问题在于图像抖动。为了有效地消除图像抖动并正确实现文字识别,提出了一种基于统计熵功率的新的识别算法。这种方法将采集到的数据作为随机信号处理。实验证明,此算法计算复杂度低,识别率高,适用于低成本嵌入式系统,在中国台湾俊亿公司24MHZ16位DMCU嵌入式系统上,获得了94%以上的正确识别率。 展开更多
关键词 统计 熵功率 文字识别
下载PDF
基于OCR识别技术的自动阅卷系统的研究 被引量:4
20
作者 马壮 赵国权 任占鹏 《河北工业科技》 CAS 2005年第6期354-357,共4页
利用光学字符识别(OCR)技术,设计的自动阅卷系统,不仅能够实现对答题卡的自动阅卷工作,还可以完成成绩的统计和成绩单的打印工作,已在实际中得到应用。结果表明该系统提高了考试阅卷工作的效率,与一般的自动阅卷系统相比,有着独特的优点... 利用光学字符识别(OCR)技术,设计的自动阅卷系统,不仅能够实现对答题卡的自动阅卷工作,还可以完成成绩的统计和成绩单的打印工作,已在实际中得到应用。结果表明该系统提高了考试阅卷工作的效率,与一般的自动阅卷系统相比,有着独特的优点,应用前景广阔。 展开更多
关键词 ocr 识别技术 自动阅卷 DELPHI7.0
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部