Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as ...Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as a highly efficient method for identifying hidden risks in high-risk construction environments,surpassing traditional inspection techniques.Building on this foundation,this paper delves into the optimization of UAV inspection routing and scheduling,addressing the complexity introduced by factors such as no-fly zones,monitoring-interval time windows,and multiple monitoring rounds.To tackle this challenging problem,we propose a mixed-integer linear programming(MILP)model that optimizes inspection task assignments,monitoring sequence schedules,and charging decisions.The comprehensive consideration of these factors differentiates our problem from conventional vehicle routing problem(VRP),leading to a mathematically intractable model for commercial solvers in the case of large-scale instances.To overcome this limitation,we design a tailored variable neighborhood search(VNS)metaheuristic,customizing the algorithm to efficiently solve our model.Extensive numerical experiments are conducted to validate the efficacy of our proposed algorithm,demonstrating its scalability for both large-scale and real-scale instances.Sensitivity experiments and a case study based on an actual engineering project are also conducted,providing valuable insights for engineering managers to enhance inspection work efficiency.展开更多
This article presents a real-life project that aimed to evaluate the safety of traffic vehicles on old bridges without any prior data.The project involved various safety inspections,including conventional,static,and d...This article presents a real-life project that aimed to evaluate the safety of traffic vehicles on old bridges without any prior data.The project involved various safety inspections,including conventional,static,and dynamic load inspections and safety assessments.After conducting these tests,it was concluded that the structure of the old bridge is relatively safe,with only a few bumps.The bridge could function normally following appropriate treatment.The analysis provides valuable insights into the assessment of the quality and safety of such bridges to ensure the safe driving of heavy vehicles.展开更多
Oil and gas pipeline networks are a key link in the coordinated development of oil and gas both upstream and downstream.To improve the reliability and safety of the oil and gas pipeline network, inspections are implem...Oil and gas pipeline networks are a key link in the coordinated development of oil and gas both upstream and downstream.To improve the reliability and safety of the oil and gas pipeline network, inspections are implemented to minimize the risk of leakage, spill and theft, as well as documenting actual incidents. In recent years, unmanned aerial vehicles have been recognized as a promising option for inspection due to their high efficiency. However, the integrated optimization of unmanned aerial vehicle inspection for oil and gas pipeline networks, including physical feasibility, the performance of mission, cooperation, real-time implementation and three-dimensional(3-D) space, is a strategic problem due to its large-scale,complexity as well as the need for efficiency. In this work, a novel mixed-integer nonlinear programming model is proposed that takes into account the constraints of the mission scenario and the safety performance of unmanned aerial vehicles. To minimize the total length of the inspection path, the model is solved by a two-stage solution method. Finally, a virtual pipeline network and a practical pipeline network are set as two examples to demonstrate the performance of the optimization schemes. Moreover, compared with the traditional genetic algorithm and simulated annealing algorithm, the self-adaptive genetic simulated annealing algorithm proposed in this paper provides strong stability.展开更多
Plenty of dams in China are in danger while there are few effective methods for underwater dam inspections of hidden problems such as conduits,cracks and inanitions.The dam safety inspection remotely operated vehicle(...Plenty of dams in China are in danger while there are few effective methods for underwater dam inspections of hidden problems such as conduits,cracks and inanitions.The dam safety inspection remotely operated vehicle(DSIROV) is designed to solve these problems which can be equipped with many advanced sensors such as acoustical,optical and electrical sensors for underwater dam inspection.A least-square parameter estimation method is utilized to estimate the hydrodynamic coefficients of DSIROV,and a four degree-of-freedom(DOF) simulation system is constructed.The architecture of DSIROV's motion control system is introduced,which includes hardware and software structures.The hardware based on PC104 BUS,uses AMD ELAN520 as the controller's embedded CPU and all control modules work in VxWorks real-time operating system.Information flow of the motion system of DSIROV,automatic control of dam scanning and dead-reckoning algorithm for navigation are also discussed.The reliability of DSIROV's control system can be verified and the control system can fulfill the motion control mission because embankment checking can be demonstrated by the lake trials.展开更多
Based on general packet radio service(GPRS) and TCP/IP protocol,a wireless transmission system of vehicle inspection data is designed. Basic structure and work theory are expounded. SIM300 designed by SIMCOM is used f...Based on general packet radio service(GPRS) and TCP/IP protocol,a wireless transmission system of vehicle inspection data is designed. Basic structure and work theory are expounded. SIM300 designed by SIMCOM is used for client GPRS communication module. Using Winsock control of visual basic(VB),the client and server communication has been accomplished. By means of a client and server communications software,the remote wireless transmission of vehicle inspection data has been accomplished also. The server management software has been developed by using Microsoft SQL Server 2000 and VB6.0. Functions of software include import,inquiry,export and maintenance of test data.展开更多
With the increasing number of vehicles,manual security inspections are becoming more laborious at road checkpoints.To address it,a specialized Road Checkpoints Robot(RCRo)system is proposed,incorporated with enhanced ...With the increasing number of vehicles,manual security inspections are becoming more laborious at road checkpoints.To address it,a specialized Road Checkpoints Robot(RCRo)system is proposed,incorporated with enhanced You Only Look Once(YOLO)and a 6-degree-of-freedom(DOF)manipulator,for autonomous identity verification and vehicle inspection.The modified YOLO is characterized by large objects’sensitivity and faster detection speed,named“LF-YOLO”.The better sensitivity of large objects and the faster detection speed are achieved by means of the Dense module-based backbone network connecting two-scale detecting network,for object detection tasks,along with optimized anchor boxes and improved loss function.During the manipulator motion,Octree-aided motion control scheme is adopted for collision-free motion through Robot Operating System(ROS).The proposed LF-YOLO which utilizes continuous optimization strategy and residual technique provides a promising detector design,which has been found to be more effective during actual object detection,in terms of decreased average detection time by 68.25%and 60.60%,and increased average Intersection over Union(Io U)by 20.74%and6.79%compared to YOLOv3 and YOLOv4 through experiments.The comprehensive functional tests of RCRo system demonstrate the feasibility and competency of the multiple unmanned inspections in practice.展开更多
基金supported by the National Natural Science Foundation of China(72201229,72025103,72394360,72394362,72361137001,72071173,and 71831008).
文摘Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as a highly efficient method for identifying hidden risks in high-risk construction environments,surpassing traditional inspection techniques.Building on this foundation,this paper delves into the optimization of UAV inspection routing and scheduling,addressing the complexity introduced by factors such as no-fly zones,monitoring-interval time windows,and multiple monitoring rounds.To tackle this challenging problem,we propose a mixed-integer linear programming(MILP)model that optimizes inspection task assignments,monitoring sequence schedules,and charging decisions.The comprehensive consideration of these factors differentiates our problem from conventional vehicle routing problem(VRP),leading to a mathematically intractable model for commercial solvers in the case of large-scale instances.To overcome this limitation,we design a tailored variable neighborhood search(VNS)metaheuristic,customizing the algorithm to efficiently solve our model.Extensive numerical experiments are conducted to validate the efficacy of our proposed algorithm,demonstrating its scalability for both large-scale and real-scale instances.Sensitivity experiments and a case study based on an actual engineering project are also conducted,providing valuable insights for engineering managers to enhance inspection work efficiency.
文摘This article presents a real-life project that aimed to evaluate the safety of traffic vehicles on old bridges without any prior data.The project involved various safety inspections,including conventional,static,and dynamic load inspections and safety assessments.After conducting these tests,it was concluded that the structure of the old bridge is relatively safe,with only a few bumps.The bridge could function normally following appropriate treatment.The analysis provides valuable insights into the assessment of the quality and safety of such bridges to ensure the safe driving of heavy vehicles.
基金part of the Program of "Study on Optimization and Supply-side Reliability of Oil Product Supply Chain Logistics System" funded under the National Natural Science Foundation of China, Grant Number 51874325
文摘Oil and gas pipeline networks are a key link in the coordinated development of oil and gas both upstream and downstream.To improve the reliability and safety of the oil and gas pipeline network, inspections are implemented to minimize the risk of leakage, spill and theft, as well as documenting actual incidents. In recent years, unmanned aerial vehicles have been recognized as a promising option for inspection due to their high efficiency. However, the integrated optimization of unmanned aerial vehicle inspection for oil and gas pipeline networks, including physical feasibility, the performance of mission, cooperation, real-time implementation and three-dimensional(3-D) space, is a strategic problem due to its large-scale,complexity as well as the need for efficiency. In this work, a novel mixed-integer nonlinear programming model is proposed that takes into account the constraints of the mission scenario and the safety performance of unmanned aerial vehicles. To minimize the total length of the inspection path, the model is solved by a two-stage solution method. Finally, a virtual pipeline network and a practical pipeline network are set as two examples to demonstrate the performance of the optimization schemes. Moreover, compared with the traditional genetic algorithm and simulated annealing algorithm, the self-adaptive genetic simulated annealing algorithm proposed in this paper provides strong stability.
基金Project(20100480964) supported by China Postdoctoral Science FoundationProjects(2002AA420090,2008AA092301) supported by the National High Technology Research and Development Program of China
文摘Plenty of dams in China are in danger while there are few effective methods for underwater dam inspections of hidden problems such as conduits,cracks and inanitions.The dam safety inspection remotely operated vehicle(DSIROV) is designed to solve these problems which can be equipped with many advanced sensors such as acoustical,optical and electrical sensors for underwater dam inspection.A least-square parameter estimation method is utilized to estimate the hydrodynamic coefficients of DSIROV,and a four degree-of-freedom(DOF) simulation system is constructed.The architecture of DSIROV's motion control system is introduced,which includes hardware and software structures.The hardware based on PC104 BUS,uses AMD ELAN520 as the controller's embedded CPU and all control modules work in VxWorks real-time operating system.Information flow of the motion system of DSIROV,automatic control of dam scanning and dead-reckoning algorithm for navigation are also discussed.The reliability of DSIROV's control system can be verified and the control system can fulfill the motion control mission because embankment checking can be demonstrated by the lake trials.
文摘Based on general packet radio service(GPRS) and TCP/IP protocol,a wireless transmission system of vehicle inspection data is designed. Basic structure and work theory are expounded. SIM300 designed by SIMCOM is used for client GPRS communication module. Using Winsock control of visual basic(VB),the client and server communication has been accomplished. By means of a client and server communications software,the remote wireless transmission of vehicle inspection data has been accomplished also. The server management software has been developed by using Microsoft SQL Server 2000 and VB6.0. Functions of software include import,inquiry,export and maintenance of test data.
基金supported by the National Key Research and Development Program of China(grant number:2017YFC0806503)。
文摘With the increasing number of vehicles,manual security inspections are becoming more laborious at road checkpoints.To address it,a specialized Road Checkpoints Robot(RCRo)system is proposed,incorporated with enhanced You Only Look Once(YOLO)and a 6-degree-of-freedom(DOF)manipulator,for autonomous identity verification and vehicle inspection.The modified YOLO is characterized by large objects’sensitivity and faster detection speed,named“LF-YOLO”.The better sensitivity of large objects and the faster detection speed are achieved by means of the Dense module-based backbone network connecting two-scale detecting network,for object detection tasks,along with optimized anchor boxes and improved loss function.During the manipulator motion,Octree-aided motion control scheme is adopted for collision-free motion through Robot Operating System(ROS).The proposed LF-YOLO which utilizes continuous optimization strategy and residual technique provides a promising detector design,which has been found to be more effective during actual object detection,in terms of decreased average detection time by 68.25%and 60.60%,and increased average Intersection over Union(Io U)by 20.74%and6.79%compared to YOLOv3 and YOLOv4 through experiments.The comprehensive functional tests of RCRo system demonstrate the feasibility and competency of the multiple unmanned inspections in practice.