In order to study vegetation evolution and environmental changes around 2.5 Ma B.P., a total of 146 pollen samples with an average time resolution of 7 000 years were analyzed in the deep-sea record at the depth of 13...In order to study vegetation evolution and environmental changes around 2.5 Ma B.P., a total of 146 pollen samples with an average time resolution of 7 000 years were analyzed in the deep-sea record at the depth of 135 - 95 m (in composition depth) from ODP Site 1143 (9° 22' N, 113° 17' E) in the southern South China Sea. The results show that the pollen influx has a distinct change. During 2.6 - 2.0 Ma B.P., the average value of pollen influx increased evidently compared with that of 3.0 - 2.6 Ma B.P. It shows that the sea level of SCS dropped dramatically around 2.6 Ma B.P., corresponding to the formation of the Northern Hemisphere ice-sheets and the enhancement of the East Asian Monsoon. The pollen influx variations reflect the glacial-interglacial cycles corresponding with the deep-sea oxygen isotope curve and indicate that the sea level of SCS rose and dropped many times after 2.6 Ma B.P. The spectrum analysis results of pollen influx show that there are cycles at 0.1Ma (eccentricity) and 46.9 ka (obliquity) during 3.0 - 2.0 Ma B.P.展开更多
In order to determine the age of the sedimentary hiatus and its geological significance, a study of the calcareous nannofossil biostratigraphy was carried out. Detailed stratigraphical data of the Late Oligocene-Early...In order to determine the age of the sedimentary hiatus and its geological significance, a study of the calcareous nannofossil biostratigraphy was carried out. Detailed stratigraphical data of the Late Oligocene-Early Miocene diagnostic species thus obtained. The nannofossil zonation of this interval was subdivided and the Oligocene-Miocene boundary was further determined. Several last Late Oligocene events were recognized, indicating a long-term sedimentary hiatus in the uppermost Upper Oligocene. The time span of the hiatus was estimated for about 2.2 Ma, at least from 23.9 to 26.1 Ma. The lithological and geophysical data from Site 1148 indicate some abrupt sedimentary changes that occurred below and above the hiatus. This hiatus at Site 1148 was probably related to the tectonic change, a major ridge jump during the seafloor spreading in the Late Oligocene South China Sea.展开更多
The Oligocene-Miocene transition period was characterized by a decrease in global CO2 levels, expansion of polar ice sheet, fall in global sea-level, etc. However, the reasons for, and mechanisms of, this global, extr...The Oligocene-Miocene transition period was characterized by a decrease in global CO2 levels, expansion of polar ice sheet, fall in global sea-level, etc. However, the reasons for, and mechanisms of, this global, extreme-cold climate change event(Mi-1) still remain controversial. Our samples from the core of the Ocean Drilling Program(ODP) Leg 154, Site 926, located in the equatorial Atlantic, mainly consist of light-gray, nannofossil chalk with foraminifers interbedded with greenish-gray, clayey, nannofossil chalk sediments. Color variation from light-gray layers(up to 80% carbonate content) to dark layers(60% carbonate content) was observed to occur cyclically at the meter scale. Therefore, we chose color reflectance lightness(L*) data as the paleoclimate proxy on which to perform cyclostratigraphic analysis because it could reflect carbonate content changes. Based on the recognition of the 405 kyr long eccentricity and 40 kyr obliquity cycles of the L* series, we tuned the series to establish an absolute astronomical time scale using the published age of the Oligocene-Miocene boundary(OMB) as the anchor for an absolute age control point. The power spectra of the tuned L* series showed that the long eccentricity signals became significantly weak, while the obliquity signals became strong, from the Late Oligocene to the Early Miocene. The 405 kyr long eccentricity minimum coincided with the 1.2 Myr obliquity node at the OMB, and similar convergences might be closely related to other extreme-cold events in Earth’s history. In addition, the sedimentation accumulation rate, oxygen isotopes of benthonic foraminifers, and rodents’ per-taxon turnover rate from Central Spain showed the same 2 Myr cyclicity, which indicates the significant influence of Earth-orbital forcing on the Earth system and ecological evolution on the million-year time scale.展开更多
ODP1148站深海沉积岩心的磁化率记录显示出较强的周期性变化规律.研究发现,中新世和渐新世的深海地层物性参数具有很强的斜率周期.Shackleton et al.利用这一规律,以北半球高纬太阳辐射曲线作为天文调谐的目标,以ODP154航次的深海沉积...ODP1148站深海沉积岩心的磁化率记录显示出较强的周期性变化规律.研究发现,中新世和渐新世的深海地层物性参数具有很强的斜率周期.Shackleton et al.利用这一规律,以北半球高纬太阳辐射曲线作为天文调谐的目标,以ODP154航次的深海沉积岩心的磁化率记录作为调谐对象,将磁化率的极大值与北半球天文辐射的极小值相对应,建立了14~34 Ma的天文调谐的年代标尺.采用相同的方法,利用南海北部ODP1148站深海沉积岩心的磁化率记录和北半球高纬太阳辐射曲线建立了南海中中新世天文调谐的年代标尺.调谐后的磁化率记录显示了很强的斜率周期和较强的岁差周期,并与太阳辐射在这2个记录上高度相关,此外偏心率周期在磁化率记录中也较显著.调谐后1148站的浮游有孔虫事件年龄与ODP154航次采用相同的天文调谐方法获取的事件年龄异常接近,而与传统方法获取的生物地层事件年龄有较大差距,这在一定程度上证明了利用天文调谐的方法建立中新世深海地层年代标尺的可行性.展开更多
Aeolian dust, a primary terrigenous component of ocean sediments, has been widely used to reconstruct the paleoclimatic evolution because its transported distance, grain size and concentration are sensitive to climate...Aeolian dust, a primary terrigenous component of ocean sediments, has been widely used to reconstruct the paleoclimatic evolution because its transported distance, grain size and concentration are sensitive to climate changes. To further characterize the aeolian dust, the deposits at site Ocean Drilling Program (ODP) 882A in northwestern Pacific Ocean are divided into four grain-size fractions (<8, 8-16, 16-64, >64 μm) using the gravitative differentiation method. Detailed rock magnetism results show that magnetite and hematite are dominant magnetic minerals for the dust components. In addition, the aeolian dust (<8 μm) represented by the concentration of magnetic minerals increases sharply at 2.73 Ma, which corresponds to the onset of major glaciation in the Northern Hemisphere. In contrast, the ice-rafted detritus (IRD) (>64 μm) contributes little to the magnetic enhancement of the sediments at 2.73 Ma. These new results greatly improve our understanding of paleoenvironmental evolution during late Pliocene-early Pleistocene in this area.展开更多
Three layers of volcanic tephra, sampled from ODP 1143 Site in the South China Sea, were observed at the mcd depth of 5.55 m, 42.66 m, and 48.25 m, and named, in this paper, layers of A, B, and C, respectively. All of...Three layers of volcanic tephra, sampled from ODP 1143 Site in the South China Sea, were observed at the mcd depth of 5.55 m, 42.66 m, and 48.25 m, and named, in this paper, layers of A, B, and C, respectively. All of these tephra layers have an average thickness of ca. 2 cm. They were constrained in age of ca. 0.070 Ma, ca. 0.80 Ma, and ca. 1.00 Ma, respectively, by the microbiostratigraphy data. These tephra layers were predominated by volcanic glass shards with a median grain size of 70-75μm in diameter. Major chemical compositions analyzed by EMPA and comparison with the previous data from other scatter areas suggest that these three layers of tephra can correspond to the three layers of Toba tephra, YTT, OTT, and HDT, respectively, erupting during the Quaternary. The occurrence of these tephra layers in the South China Sea implies that the Toba eruptions often occurred in the summer monsoon seasons of the South China Sea during the Quaternary, and that the strength of eruptions was probably stronger than that previously estimated.展开更多
基金the National Natural Science Foundation of China projects (40371116) the National Major Basic Research Program of China (G200078502).
文摘In order to study vegetation evolution and environmental changes around 2.5 Ma B.P., a total of 146 pollen samples with an average time resolution of 7 000 years were analyzed in the deep-sea record at the depth of 135 - 95 m (in composition depth) from ODP Site 1143 (9° 22' N, 113° 17' E) in the southern South China Sea. The results show that the pollen influx has a distinct change. During 2.6 - 2.0 Ma B.P., the average value of pollen influx increased evidently compared with that of 3.0 - 2.6 Ma B.P. It shows that the sea level of SCS dropped dramatically around 2.6 Ma B.P., corresponding to the formation of the Northern Hemisphere ice-sheets and the enhancement of the East Asian Monsoon. The pollen influx variations reflect the glacial-interglacial cycles corresponding with the deep-sea oxygen isotope curve and indicate that the sea level of SCS rose and dropped many times after 2.6 Ma B.P. The spectrum analysis results of pollen influx show that there are cycles at 0.1Ma (eccentricity) and 46.9 ka (obliquity) during 3.0 - 2.0 Ma B.P.
文摘In order to determine the age of the sedimentary hiatus and its geological significance, a study of the calcareous nannofossil biostratigraphy was carried out. Detailed stratigraphical data of the Late Oligocene-Early Miocene diagnostic species thus obtained. The nannofossil zonation of this interval was subdivided and the Oligocene-Miocene boundary was further determined. Several last Late Oligocene events were recognized, indicating a long-term sedimentary hiatus in the uppermost Upper Oligocene. The time span of the hiatus was estimated for about 2.2 Ma, at least from 23.9 to 26.1 Ma. The lithological and geophysical data from Site 1148 indicate some abrupt sedimentary changes that occurred below and above the hiatus. This hiatus at Site 1148 was probably related to the tectonic change, a major ridge jump during the seafloor spreading in the Late Oligocene South China Sea.
基金supported by the National Natural Science Foundation of China (Grant No. 41322013)the Program of Introducing Talents of Discipline to Universities (Grant No. B14031)the National Basic Research Program of China (Grant No. 2012CB822003)
文摘The Oligocene-Miocene transition period was characterized by a decrease in global CO2 levels, expansion of polar ice sheet, fall in global sea-level, etc. However, the reasons for, and mechanisms of, this global, extreme-cold climate change event(Mi-1) still remain controversial. Our samples from the core of the Ocean Drilling Program(ODP) Leg 154, Site 926, located in the equatorial Atlantic, mainly consist of light-gray, nannofossil chalk with foraminifers interbedded with greenish-gray, clayey, nannofossil chalk sediments. Color variation from light-gray layers(up to 80% carbonate content) to dark layers(60% carbonate content) was observed to occur cyclically at the meter scale. Therefore, we chose color reflectance lightness(L*) data as the paleoclimate proxy on which to perform cyclostratigraphic analysis because it could reflect carbonate content changes. Based on the recognition of the 405 kyr long eccentricity and 40 kyr obliquity cycles of the L* series, we tuned the series to establish an absolute astronomical time scale using the published age of the Oligocene-Miocene boundary(OMB) as the anchor for an absolute age control point. The power spectra of the tuned L* series showed that the long eccentricity signals became significantly weak, while the obliquity signals became strong, from the Late Oligocene to the Early Miocene. The 405 kyr long eccentricity minimum coincided with the 1.2 Myr obliquity node at the OMB, and similar convergences might be closely related to other extreme-cold events in Earth’s history. In addition, the sedimentation accumulation rate, oxygen isotopes of benthonic foraminifers, and rodents’ per-taxon turnover rate from Central Spain showed the same 2 Myr cyclicity, which indicates the significant influence of Earth-orbital forcing on the Earth system and ecological evolution on the million-year time scale.
文摘ODP1148站深海沉积岩心的磁化率记录显示出较强的周期性变化规律.研究发现,中新世和渐新世的深海地层物性参数具有很强的斜率周期.Shackleton et al.利用这一规律,以北半球高纬太阳辐射曲线作为天文调谐的目标,以ODP154航次的深海沉积岩心的磁化率记录作为调谐对象,将磁化率的极大值与北半球天文辐射的极小值相对应,建立了14~34 Ma的天文调谐的年代标尺.采用相同的方法,利用南海北部ODP1148站深海沉积岩心的磁化率记录和北半球高纬太阳辐射曲线建立了南海中中新世天文调谐的年代标尺.调谐后的磁化率记录显示了很强的斜率周期和较强的岁差周期,并与太阳辐射在这2个记录上高度相关,此外偏心率周期在磁化率记录中也较显著.调谐后1148站的浮游有孔虫事件年龄与ODP154航次采用相同的天文调谐方法获取的事件年龄异常接近,而与传统方法获取的生物地层事件年龄有较大差距,这在一定程度上证明了利用天文调谐的方法建立中新世深海地层年代标尺的可行性.
基金supported by National Natural Science Foundation of China (Grants Nos. 40974036, 41025013 and 40821091)the CAS/SAFEA International Partnership Program for Creative Research Teams
文摘Aeolian dust, a primary terrigenous component of ocean sediments, has been widely used to reconstruct the paleoclimatic evolution because its transported distance, grain size and concentration are sensitive to climate changes. To further characterize the aeolian dust, the deposits at site Ocean Drilling Program (ODP) 882A in northwestern Pacific Ocean are divided into four grain-size fractions (<8, 8-16, 16-64, >64 μm) using the gravitative differentiation method. Detailed rock magnetism results show that magnetite and hematite are dominant magnetic minerals for the dust components. In addition, the aeolian dust (<8 μm) represented by the concentration of magnetic minerals increases sharply at 2.73 Ma, which corresponds to the onset of major glaciation in the Northern Hemisphere. In contrast, the ice-rafted detritus (IRD) (>64 μm) contributes little to the magnetic enhancement of the sediments at 2.73 Ma. These new results greatly improve our understanding of paleoenvironmental evolution during late Pliocene-early Pleistocene in this area.
基金the NSFC, the National Natural Science Foundation of China (Grant No. 49999560).
文摘Three layers of volcanic tephra, sampled from ODP 1143 Site in the South China Sea, were observed at the mcd depth of 5.55 m, 42.66 m, and 48.25 m, and named, in this paper, layers of A, B, and C, respectively. All of these tephra layers have an average thickness of ca. 2 cm. They were constrained in age of ca. 0.070 Ma, ca. 0.80 Ma, and ca. 1.00 Ma, respectively, by the microbiostratigraphy data. These tephra layers were predominated by volcanic glass shards with a median grain size of 70-75μm in diameter. Major chemical compositions analyzed by EMPA and comparison with the previous data from other scatter areas suggest that these three layers of tephra can correspond to the three layers of Toba tephra, YTT, OTT, and HDT, respectively, erupting during the Quaternary. The occurrence of these tephra layers in the South China Sea implies that the Toba eruptions often occurred in the summer monsoon seasons of the South China Sea during the Quaternary, and that the strength of eruptions was probably stronger than that previously estimated.