OER Commons项目是由美国教育领域的知识管理研究协会(ISKME)创建的共享开放教育资源的知识库与联接门户,旨在支持开放教育资源应用和重用。文章介绍了OER Commons项目的发展及其特色,并分析了该项目的开放机制,提出了对我国开放教育资...OER Commons项目是由美国教育领域的知识管理研究协会(ISKME)创建的共享开放教育资源的知识库与联接门户,旨在支持开放教育资源应用和重用。文章介绍了OER Commons项目的发展及其特色,并分析了该项目的开放机制,提出了对我国开放教育资源建设的启示。展开更多
Recently, H_(2) has attracted increasing attention as green energy carrier holding the possibility to replace fossil fuel-based energy sources and thereby reduce CO_(2) emissions. Green hydrogen can be generated by wa...Recently, H_(2) has attracted increasing attention as green energy carrier holding the possibility to replace fossil fuel-based energy sources and thereby reduce CO_(2) emissions. Green hydrogen can be generated by water electrolysis using renewable energies like wind and solar power. When it is combusted, only water forms as by-product. However, the efficiency of water electrolysis is hampered by the anodic oxygen evolution reaction(OER) because of the slow kinetics which leads to a high overpotential. Therefore, many catalysts have been developed for OER to facilitate the kinetics and reduce the overpotential. In addition to electrocatalytic activity, the stability of the catalysts is imperative for industrial application and has been intensively studied. In this review, we cover recent findings on the stability and deactivation mechanisms of OER catalysts. We discuss the correlation between OER activity and stability, methodologies and experimental techniques to study the stability and deactivation as well as the deactivation mechanisms, together with factors influencing stability. Furthermore, strategies for stabilizing and regenerating OER catalysts as well as methods to predict stability are summarized. Finally, the review highlights emerging methodologies yet to be explored and future directions of stability studies and the design of highly stable OER catalysts.展开更多
Herein, Co_3O_4 nanoparticles/nitrogen-doped carbon(Co_3O_4/NPC) composites with different structures were prepared via a facile method. Structure control was achieved by the rational morphology design of ZIF-67 precu...Herein, Co_3O_4 nanoparticles/nitrogen-doped carbon(Co_3O_4/NPC) composites with different structures were prepared via a facile method. Structure control was achieved by the rational morphology design of ZIF-67 precursors, which were then pyrolyzed in air to obtain Co_3O_4/NPC composites. When applied as catalysts for the oxygen evolution reaction(OER), the M-Co_3O_4/NPC composites derived from the flower-like ZIF-67 showedsuperior catalytic activities than those derived from the rhombic dodecahedron and hollow spherical ZIF-67. The former M-Co_3O_4/NPC composite displayed a small overpotential of 0.3 V, low onset potential of 1.41 V, small Tafel slope of 83 m V dec^(-1), and a desirable stability.(94.7% OER activity was retained after 10 h.) The excellent performance of the flower-like M-Co_3O_4/NPC composite in the OER was attributed to its favorable structure.展开更多
基金support by the German Federal Ministry of Education and Research (BMBF) (H2Giga QT1.1 PrometH2eusFKZ 03HY105A)the China Scholarship Council for financial support。
文摘Recently, H_(2) has attracted increasing attention as green energy carrier holding the possibility to replace fossil fuel-based energy sources and thereby reduce CO_(2) emissions. Green hydrogen can be generated by water electrolysis using renewable energies like wind and solar power. When it is combusted, only water forms as by-product. However, the efficiency of water electrolysis is hampered by the anodic oxygen evolution reaction(OER) because of the slow kinetics which leads to a high overpotential. Therefore, many catalysts have been developed for OER to facilitate the kinetics and reduce the overpotential. In addition to electrocatalytic activity, the stability of the catalysts is imperative for industrial application and has been intensively studied. In this review, we cover recent findings on the stability and deactivation mechanisms of OER catalysts. We discuss the correlation between OER activity and stability, methodologies and experimental techniques to study the stability and deactivation as well as the deactivation mechanisms, together with factors influencing stability. Furthermore, strategies for stabilizing and regenerating OER catalysts as well as methods to predict stability are summarized. Finally, the review highlights emerging methodologies yet to be explored and future directions of stability studies and the design of highly stable OER catalysts.
基金supported by the Scientific and Technological Innovation Platform of Fujian Province(2006L2003)Scientific Research Project of Wuyi University(YJ201706)
文摘Herein, Co_3O_4 nanoparticles/nitrogen-doped carbon(Co_3O_4/NPC) composites with different structures were prepared via a facile method. Structure control was achieved by the rational morphology design of ZIF-67 precursors, which were then pyrolyzed in air to obtain Co_3O_4/NPC composites. When applied as catalysts for the oxygen evolution reaction(OER), the M-Co_3O_4/NPC composites derived from the flower-like ZIF-67 showedsuperior catalytic activities than those derived from the rhombic dodecahedron and hollow spherical ZIF-67. The former M-Co_3O_4/NPC composite displayed a small overpotential of 0.3 V, low onset potential of 1.41 V, small Tafel slope of 83 m V dec^(-1), and a desirable stability.(94.7% OER activity was retained after 10 h.) The excellent performance of the flower-like M-Co_3O_4/NPC composite in the OER was attributed to its favorable structure.