In multiple-input-multiple-output orthogonal-frequency-division-multiplexing (MIMO-OFDM) system, a rate-embedded differential space-time-frequency (DSTF) coding scheme was proposed. Both the conventional space-tim...In multiple-input-multiple-output orthogonal-frequency-division-multiplexing (MIMO-OFDM) system, a rate-embedded differential space-time-frequency (DSTF) coding scheme was proposed. Both the conventional space-time codes and coding techniques in frequency domain were employed to build high rate and low rate space-time-frequency message matrices. Then both types of message matrices were differentially transmitted alternately in the frequency domain. Consequently, the total transmission rate could be improved greatly. At receiver, a simple decision feedback differential detector (SDF-DD) was adopted to further enhance the total error performance with approximate DD complexity. Simulation results verified that the proposed scheme can implement high rate and high reliability differential transmission. Compared with the conventional DSTF coding schemes, the proposed scheme achieves higher spectral efficiency and much better error performance.展开更多
基金Supported by the High Technology Research and Development Programme of China (No. 003AA12331007) and the National Natural Science Foundation of China (No. 60332030, 60572157).
文摘In multiple-input-multiple-output orthogonal-frequency-division-multiplexing (MIMO-OFDM) system, a rate-embedded differential space-time-frequency (DSTF) coding scheme was proposed. Both the conventional space-time codes and coding techniques in frequency domain were employed to build high rate and low rate space-time-frequency message matrices. Then both types of message matrices were differentially transmitted alternately in the frequency domain. Consequently, the total transmission rate could be improved greatly. At receiver, a simple decision feedback differential detector (SDF-DD) was adopted to further enhance the total error performance with approximate DD complexity. Simulation results verified that the proposed scheme can implement high rate and high reliability differential transmission. Compared with the conventional DSTF coding schemes, the proposed scheme achieves higher spectral efficiency and much better error performance.