The high peak-to-average power ratio (PAPR) is one of the serious problems in the application of OFDM technology. In this paper, an improved partial transmit sequence (PTS) scheme based on combining the grouped discre...The high peak-to-average power ratio (PAPR) is one of the serious problems in the application of OFDM technology. In this paper, an improved partial transmit sequence (PTS) scheme based on combining the grouped discrete cosine transform (DCT) with PTS technique is proposed. In the proposed scheme, the adjacent partitioned data are firstly transformed by a DCT into new modified data. After that the proposed scheme utilizes the conventional PTS technique to further reduce the PAPR of the OFDM signal. The performance of the PAPR is evaluated using a computer simulation. The simulation results indicate that the proposed scheme may improve the PAPR performance compared with the conventional PTS scheme, the grouped DCT scheme, and original OFDM respectively.展开更多
Partial Transmit Sequences (PTS) is an efficient scheme for Peak-to-Average Power Ratio (PAPR) reduction in Orthogonal Frequency Division Multiplexing (OFDM) system. It does not bring any signal distortion. However, i...Partial Transmit Sequences (PTS) is an efficient scheme for Peak-to-Average Power Ratio (PAPR) reduction in Orthogonal Frequency Division Multiplexing (OFDM) system. It does not bring any signal distortion. However, its remarkable drawback is the high computational complexity. In order to reduce the computational complexity, currently many PTS methods have been proposed but with the cost of the loss of PAPR performance of the system. In this paper, we introduce an improved PTS optimization method with superimposed training. Simulation results show that, compared with conventional PTS, improved PTS scheme can achieve better PAPR performance while be implemented with lower computation complexity of the system.展开更多
High peak-to-average power ratio(PAPR) is a concern in orthogonal frequency division multiplexing(OFDM) systems. Hadamard based selected mapping(HSLM) which uses Hadamard code as the phase sequence in selected mapping...High peak-to-average power ratio(PAPR) is a concern in orthogonal frequency division multiplexing(OFDM) systems. Hadamard based selected mapping(HSLM) which uses Hadamard code as the phase sequence in selected mapping(SLM) is an attractive technique to reduce PAPR. But it requires sending side information(SI) to the receiver for each data block, and this results in a reduction in bandwidth efficiency. In this paper, we proposed a modified PAPR reduction method called semi-Hadamard based selected mapping(semi-HSLM) to decouple the phase information matrix into a phase rotation matrix for PAPR reduction and a SI matrix for side information hiding. We proposed a semi-hadamard matrix generation method to generate the phase rotation matrix, and designed a cyclic shift matrix as the SI matrix. Compared with the traditional HSLM, the semi-HSLM saves half of the phase storage and achieves good PAPR reduction performance.展开更多
At present, mud pulse transmission systems are widely used in downhole data transmission. But the systems are very low in transmission efficiency, only 5-10 bits/s, with very large anti-inter-symbol-interference (ISI)...At present, mud pulse transmission systems are widely used in downhole data transmission. But the systems are very low in transmission efficiency, only 5-10 bits/s, with very large anti-inter-symbol-interference (ISI). It cannot meet high requirements for high-speed transmission of modern logging system. The development of communication technology has laid some foundation for this requirement. For this purpose, the Orthogonal Frequency Division Multiplexing (OFDM) Wireless Downhole Transmission Systems are proposed for the first time because of their high transmission rate, anti-inter-symbol-interference (ISI), and high spectral efficiency, etc. Due to non-linear power amplifier (PA) of logging systems with limited dynamic range, the drawbacks of high peak-average power ratio (PAPR) may outweigh all the potential benefits of OFDM wireless downhole transmission systems. Selective mapping (SLM) method can reduce the PAPR of OFDM logging signals without distortion. But at the receiver, the conventional SLM method needs exact bits of side information (SI) to recover the data signal. The probability of erroneous SI detection has a significant influence on the error performance of the system. And individual transmissions of SI result in the reduction of bandwidth efficiency. To restore the exact data signal, our scheme codes the SI bits by linear block codes (LBC), and is easily decoded by syndrome decoding. And then the coding SI bits are superimposed onto the logging signals to omit SI bits transmission. The theory and simulation results show that the proposed method has better performance than the conventional one. Accordingly, the OFDM wireless downhole transmission systems can tackle the high PAPR problem, and highten the transmission rate of logging signals.展开更多
Orthogonal frequency division multiplexing(OFDM) is an attractive technology to provide immense improvement in wireless transmission capacity but high peak-to-average power ratio(PAPR) is a major drawback of OFDM syst...Orthogonal frequency division multiplexing(OFDM) is an attractive technology to provide immense improvement in wireless transmission capacity but high peak-to-average power ratio(PAPR) is a major drawback of OFDM system.Selected mapping(SLM) scheme has good performance for PAPR reduction.It requires the transmitting data to be multiplied by random phase sequences.However,the sequences are pseudo-random which will decrease the method effectiveness.Exhaustive entropy is introduced in this paper which can identify the strength of random phase sequences property.Then an exhaustive entropy based on SLM method is proposed.The scheme improves the effectiveness of random phase sequences by selecting the larger exhaustive entropy of them.The simulation results show that the PAPR reduction performance is better than that of conventional SLM through this method.展开更多
One of main disadvantage of OFDM is high peak-to-average power ratio (PAPR). In this paper, two effective PAPR reduction schemes are proposed. These techniques combine DCT and SLM techniques. The scheme 1 is composed ...One of main disadvantage of OFDM is high peak-to-average power ratio (PAPR). In this paper, two effective PAPR reduction schemes are proposed. These techniques combine DCT and SLM techniques. The scheme 1 is composed of the DCT followed by SLM technique, and the DCT is used followed by conventional SLM in proposed scheme 2. Simulation results show that the proposed schemes can obtain significant PAPR reduction performance with that of ordinary SLM techniques.展开更多
选择映射(selected mapping,SLM)技术是一种无失真降低OFDM(orthogonal frequency divisionmultiplexing)信号峰均比PAPR(peak-to-average power ratio)的有效方法.但是普通的SLM技术因为相位序列边带信息的传输而导致了数据传输速率的...选择映射(selected mapping,SLM)技术是一种无失真降低OFDM(orthogonal frequency divisionmultiplexing)信号峰均比PAPR(peak-to-average power ratio)的有效方法.但是普通的SLM技术因为相位序列边带信息的传输而导致了数据传输速率的损失.因此提出了一种改进的SLM技术来降低OFDM信号的PAPR,它把相位序列信息嵌入在编码后的OFDM数据块的检测符号上,避免了系统特意传输边带信息而造成的数据传输速率的损失.Matlab仿真结果表明,所提出的改进SLM技术可以在不过分增加系统复杂性的基础上,获得比普通的SLM技术更好地降低PAPR的性能.展开更多
基于非连续正交频分复用(non-continuous orthogonal frequency division multiplexing,NC-OFDM)模型,提出和研究了选择映射(selected mapping,SLM)算法和部分传输序列(partial transmit sequence,PTS)算法,及其SLM-PTS融合优化技术,设...基于非连续正交频分复用(non-continuous orthogonal frequency division multiplexing,NC-OFDM)模型,提出和研究了选择映射(selected mapping,SLM)算法和部分传输序列(partial transmit sequence,PTS)算法,及其SLM-PTS融合优化技术,设计了融合模型和改进流程。仿真结果与其他文献方法进行了对比,验证了SLM-PTS的融合具有优秀的峰值平均功率比(peak to average power ratio,PAPR)降低能力,但缺点是算法实现复杂度过高。因此,又进一步提出了互补型映射和限幅的联合算法(SLM-Clipping)融合解决方案,并利用深度学习方法建立PAPRnet模型。仿真结果验证了此算法对NC-OFDM系统具有PAPR良好的抑制效果,而且能够提高仿真运算效率。展开更多
提出一种免疫遗传PTS(partial transmit sequences)算法来降低OFDM系统PAPR(peak-to-average power ratio).PTS算法大大降低OFDM系统中高PAPR出现的概率,并且不会带来性能损失.PTS算法的关键是权因子的选择.将免疫遗传算法应用在PTS算...提出一种免疫遗传PTS(partial transmit sequences)算法来降低OFDM系统PAPR(peak-to-average power ratio).PTS算法大大降低OFDM系统中高PAPR出现的概率,并且不会带来性能损失.PTS算法的关键是权因子的选择.将免疫遗传算法应用在PTS算法的权因子选择上,不仅简化了计算复杂度,同时对权因子进行了优化,仿真结果验证了新方法的有效性.展开更多
文摘The high peak-to-average power ratio (PAPR) is one of the serious problems in the application of OFDM technology. In this paper, an improved partial transmit sequence (PTS) scheme based on combining the grouped discrete cosine transform (DCT) with PTS technique is proposed. In the proposed scheme, the adjacent partitioned data are firstly transformed by a DCT into new modified data. After that the proposed scheme utilizes the conventional PTS technique to further reduce the PAPR of the OFDM signal. The performance of the PAPR is evaluated using a computer simulation. The simulation results indicate that the proposed scheme may improve the PAPR performance compared with the conventional PTS scheme, the grouped DCT scheme, and original OFDM respectively.
文摘Partial Transmit Sequences (PTS) is an efficient scheme for Peak-to-Average Power Ratio (PAPR) reduction in Orthogonal Frequency Division Multiplexing (OFDM) system. It does not bring any signal distortion. However, its remarkable drawback is the high computational complexity. In order to reduce the computational complexity, currently many PTS methods have been proposed but with the cost of the loss of PAPR performance of the system. In this paper, we introduce an improved PTS optimization method with superimposed training. Simulation results show that, compared with conventional PTS, improved PTS scheme can achieve better PAPR performance while be implemented with lower computation complexity of the system.
基金the Wireless Network Positioning and Communication Integration Research Center in BUPT for financial support
文摘High peak-to-average power ratio(PAPR) is a concern in orthogonal frequency division multiplexing(OFDM) systems. Hadamard based selected mapping(HSLM) which uses Hadamard code as the phase sequence in selected mapping(SLM) is an attractive technique to reduce PAPR. But it requires sending side information(SI) to the receiver for each data block, and this results in a reduction in bandwidth efficiency. In this paper, we proposed a modified PAPR reduction method called semi-Hadamard based selected mapping(semi-HSLM) to decouple the phase information matrix into a phase rotation matrix for PAPR reduction and a SI matrix for side information hiding. We proposed a semi-hadamard matrix generation method to generate the phase rotation matrix, and designed a cyclic shift matrix as the SI matrix. Compared with the traditional HSLM, the semi-HSLM saves half of the phase storage and achieves good PAPR reduction performance.
文摘At present, mud pulse transmission systems are widely used in downhole data transmission. But the systems are very low in transmission efficiency, only 5-10 bits/s, with very large anti-inter-symbol-interference (ISI). It cannot meet high requirements for high-speed transmission of modern logging system. The development of communication technology has laid some foundation for this requirement. For this purpose, the Orthogonal Frequency Division Multiplexing (OFDM) Wireless Downhole Transmission Systems are proposed for the first time because of their high transmission rate, anti-inter-symbol-interference (ISI), and high spectral efficiency, etc. Due to non-linear power amplifier (PA) of logging systems with limited dynamic range, the drawbacks of high peak-average power ratio (PAPR) may outweigh all the potential benefits of OFDM wireless downhole transmission systems. Selective mapping (SLM) method can reduce the PAPR of OFDM logging signals without distortion. But at the receiver, the conventional SLM method needs exact bits of side information (SI) to recover the data signal. The probability of erroneous SI detection has a significant influence on the error performance of the system. And individual transmissions of SI result in the reduction of bandwidth efficiency. To restore the exact data signal, our scheme codes the SI bits by linear block codes (LBC), and is easily decoded by syndrome decoding. And then the coding SI bits are superimposed onto the logging signals to omit SI bits transmission. The theory and simulation results show that the proposed method has better performance than the conventional one. Accordingly, the OFDM wireless downhole transmission systems can tackle the high PAPR problem, and highten the transmission rate of logging signals.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 61101126)the Postdoctoral Science Foundation of China (Grant No.2011M500664)
文摘Orthogonal frequency division multiplexing(OFDM) is an attractive technology to provide immense improvement in wireless transmission capacity but high peak-to-average power ratio(PAPR) is a major drawback of OFDM system.Selected mapping(SLM) scheme has good performance for PAPR reduction.It requires the transmitting data to be multiplied by random phase sequences.However,the sequences are pseudo-random which will decrease the method effectiveness.Exhaustive entropy is introduced in this paper which can identify the strength of random phase sequences property.Then an exhaustive entropy based on SLM method is proposed.The scheme improves the effectiveness of random phase sequences by selecting the larger exhaustive entropy of them.The simulation results show that the PAPR reduction performance is better than that of conventional SLM through this method.
文摘One of main disadvantage of OFDM is high peak-to-average power ratio (PAPR). In this paper, two effective PAPR reduction schemes are proposed. These techniques combine DCT and SLM techniques. The scheme 1 is composed of the DCT followed by SLM technique, and the DCT is used followed by conventional SLM in proposed scheme 2. Simulation results show that the proposed schemes can obtain significant PAPR reduction performance with that of ordinary SLM techniques.
文摘选择映射(selected mapping,SLM)技术是一种无失真降低OFDM(orthogonal frequency divisionmultiplexing)信号峰均比PAPR(peak-to-average power ratio)的有效方法.但是普通的SLM技术因为相位序列边带信息的传输而导致了数据传输速率的损失.因此提出了一种改进的SLM技术来降低OFDM信号的PAPR,它把相位序列信息嵌入在编码后的OFDM数据块的检测符号上,避免了系统特意传输边带信息而造成的数据传输速率的损失.Matlab仿真结果表明,所提出的改进SLM技术可以在不过分增加系统复杂性的基础上,获得比普通的SLM技术更好地降低PAPR的性能.
文摘基于非连续正交频分复用(non-continuous orthogonal frequency division multiplexing,NC-OFDM)模型,提出和研究了选择映射(selected mapping,SLM)算法和部分传输序列(partial transmit sequence,PTS)算法,及其SLM-PTS融合优化技术,设计了融合模型和改进流程。仿真结果与其他文献方法进行了对比,验证了SLM-PTS的融合具有优秀的峰值平均功率比(peak to average power ratio,PAPR)降低能力,但缺点是算法实现复杂度过高。因此,又进一步提出了互补型映射和限幅的联合算法(SLM-Clipping)融合解决方案,并利用深度学习方法建立PAPRnet模型。仿真结果验证了此算法对NC-OFDM系统具有PAPR良好的抑制效果,而且能够提高仿真运算效率。
文摘提出一种免疫遗传PTS(partial transmit sequences)算法来降低OFDM系统PAPR(peak-to-average power ratio).PTS算法大大降低OFDM系统中高PAPR出现的概率,并且不会带来性能损失.PTS算法的关键是权因子的选择.将免疫遗传算法应用在PTS算法的权因子选择上,不仅简化了计算复杂度,同时对权因子进行了优化,仿真结果验证了新方法的有效性.