In this paper, an enhanced greedy bit and power allocation algorithms for orthogonal frequency division multiplexing (OFDM) communication systems are introduced. These algorithms combine low complexity greedy power al...In this paper, an enhanced greedy bit and power allocation algorithms for orthogonal frequency division multiplexing (OFDM) communication systems are introduced. These algorithms combine low complexity greedy power allocation algorithms with a simplified maximum ratio combining (MRC) precoding technique at the transmitter for maximizing the average data throughput of OFDM communication systems. Results of computer simulations show that precoding is an effective technique for improving the throughput performance of the proposed bit and power allocation algorithms.展开更多
To improve the performance of a multiuser MIMO-OFDM system with imperfect channel status information, a downlink adaptive resource allocation algorithm which combines space-time block coding and beam forming (STBC-BF...To improve the performance of a multiuser MIMO-OFDM system with imperfect channel status information, a downlink adaptive resource allocation algorithm which combines space-time block coding and beam forming (STBC-BF) is proposed. The algorithm allocates the subcarriers with a shared manner. A zero forcing processing with joint Rx-Tx is used to suppress the co-channel interference (CCI) and to construct uncorrelated channels for STBC. An adaptive power allocation for the STBC equivalent channels can increase signal to interference and noise ratio at the receiver. Simulation results show that under the condition of an imperfect CSI, the proposed algorithm improves the system performance and reduces the number of BS transmit antennas required.展开更多
A power allocation scheme for multi-user multiple-input multiple-output orthogonal frequency division multiplexing (MI- MO-OFDM) systems with channel state information (CSI) on transmitter and receiver is pressed....A power allocation scheme for multi-user multiple-input multiple-output orthogonal frequency division multiplexing (MI- MO-OFDM) systems with channel state information (CSI) on transmitter and receiver is pressed. Multi-user lower allocation can be decoupled into single user lower allocation throughout null space mapping of multi-user channel and lower allocation can be performed throughout spatial-spectral water-filling for per user.To deal with more users in system and fading correlation,scheduling is oerformed to maintain the gain of power allocation.The proposed scheme can substantially improve system's spectral efficiency with low complexity.Simulation results validate the accuracy of theoretic analyses.展开更多
The presented scheme named M-CAP (Maximum CAPacity) uses the CSI (Channel State Information) and its statistics to deduce an equivalent channel according to which the transmit power is allocated to the subchannels. An...The presented scheme named M-CAP (Maximum CAPacity) uses the CSI (Channel State Information) and its statistics to deduce an equivalent channel according to which the transmit power is allocated to the subchannels. And then modulation scheme is determined adaptively according to the power allocated to each subchannel. The advantage of the M-CAP scheme is that it combines power allocation and adaptive modulation while maintaining a large capacity. We demonstrate by computer simulations that the proposed M-CAP scheme can significantly improve system performance compared with the traditional schemes.展开更多
This paper investigates subcarrier and power allocation in a multi-UAV OFDM system.The study considers a practical scenario,where certain subcarriers are unavailable for dynamic subcarrier allocation,on account of pre...This paper investigates subcarrier and power allocation in a multi-UAV OFDM system.The study considers a practical scenario,where certain subcarriers are unavailable for dynamic subcarrier allocation,on account of pre-allocation for burst transmissions.We first propose a novel iterative algorithm to jointly optimize subcarrier and power allocation,so as to maximize the sum rate of the uplink transmission in the multiUAV OFDM system.The key idea behind our solution is converting the nontrivial allocation problem into a weighted mean square error(MSE) problem.By this means,the allocation problem can be solved by the alternating optimization method.Besides,aiming at a lower-complexity solution,we propose a heuristic allocation scheme,where subcarrier allocation and transmit power allocation are separately optimized.In the heuristic scheme,closedform solution can be obtained for power allocation.Simulation results demonstrate that in the presence of stretched subcarrier resource,the proposed iterative joint optimization algorithm can significantly outperform the heuristic scheme,offering a higher sum rate.展开更多
Due to their spectrum shaping capability and high adaptability, the multi-carrier systems are considered as prime candidates for use in the Cognitive Radio (CR) networks. In these structures, the deactivation of the p...Due to their spectrum shaping capability and high adaptability, the multi-carrier systems are considered as prime candidates for use in the Cognitive Radio (CR) networks. In these structures, the deactivation of the primary users’ (PUs) bands makes the secondary users (SUs) use a limited number of sub-carriers, so the total capacity of CR networks is reduced. However, multiple transmit antennas can be applied to OFDM- based CR to compensate for such a low capacity. The present study investigates the problem of power allo-cation in MIMO-OFDM based CR Networks. The objective is maximizing the total capacity of CR systems in the downlink path under both interference on the PUs’ bands and maximum power of the CR transmitter constraints. It is shown that the optimal solution has high computational complexity, and therefore, an effi-cient sub-optimal algorithm is suggested for this application. As simulation results show, the suggested algo-rithm in the present paper is more enhanced and efficient than the previous algorithms.展开更多
Orthogonal frequency division multiplexing(OFDM) is an attractive modulation candidate for Cognitive Radio(CR) networks.Effective and reliable subcarrier power allocation in OFDM-based Cognitive Radio(CR) networks is ...Orthogonal frequency division multiplexing(OFDM) is an attractive modulation candidate for Cognitive Radio(CR) networks.Effective and reliable subcarrier power allocation in OFDM-based Cognitive Radio(CR) networks is a challenging problem.This paper focuses on the power allocation for OFDM-based Cognitive Radio(CR) networks.Our objective is to maximize the total transmission rates of Secondary Users(SU) by adjusting the power of subcarrier while the interference introduced to the Primary User(PU) is within a certain range and the total power of subcarrier is not beyond the total power constraint.We investigate the optimal power allocation algorithm for OFDM-based Cog-nitive Radio(CR) based on convex optimization theory.Then,because of high complexity of the op-timal power allocation algorithm,we propose an effective suboptimal power loading scheme.Theory analysis and simulation results show that the performance of the suboptimal power allocation algorithm is close to the performance of the optimal power allocation algorithm,while the complexity of the suboptimal power allocation algorithm is much lower.展开更多
Two-way decode-and-forward(DF) relay technique is an efficient method to improve system performance in 5G networks.However,traditional orthogonal frequency division multiplexing(OFDM) based two-way relay systems only ...Two-way decode-and-forward(DF) relay technique is an efficient method to improve system performance in 5G networks.However,traditional orthogonal frequency division multiplexing(OFDM) based two-way relay systems only consider a per-subcarrier relay strategy,which treats each subcarrier as a separate channel,which results in significant sum rate loss,especially in fading environments.In this paper,a joint coding scheme over multiple subcarriers is involved for multipair users in two-way relay systems to obtain multiuser diversity.A generalized subcarrier pairing strategy is proposed to permit each user-pair to occupy different subcarriers during the two transmission phases,i.e.,the multiple access and broadcast phases.Moreover,a low complexity joint resource allocation scheme is proposed to improve the spectrum efficiency with an additional multi-user diversity gain.Some numerical simulations are finally provided to verify the efficacy of our proposal.展开更多
In cognitive radio (CR),power allocation plays an important role in protecting primary user from disturbance of secondary user. Some existing studies about power allocation in CR utilize 'interference temperature'...In cognitive radio (CR),power allocation plays an important role in protecting primary user from disturbance of secondary user. Some existing studies about power allocation in CR utilize 'interference temperature' to achieve this protection,which might not be suitable for the OFDM-based CR. Thus in this paper,power allocation problem in multi-user orthogonal frequency division multiplexing (OFDM) and distributed antenna cognitive radio with radio over fiber (RoF) is firstly modeled as an optimization problem,where the limitation on secondary user is not 'interference temperature',but that total throughput of primary user in all the resource units (RUs) must be beyond the given threshold. Moreover,based on the theorem about maximizing the total throughput of secondary user,equal power allocation algorithm is introduced. Furthermore,as the optimization problem for power allocation is not convex,it is transformed to be a convex one with geometric programming,where the solution can be obtained using duality and Karush-Kuhn-Tucker (KKT) conditions to form the optimal power allocation algorithm. Finally,extensive simulation results illustrate the significant performance improvement of the optimal algorithm compared to the existing algorithm and equal power allocation algorithm.展开更多
Getting along with the improvement of green communications, the energy efficiency (EE) of wireless network becomes more and more important. However, in nmlti-relay-assisted systems, the related work obviously depend...Getting along with the improvement of green communications, the energy efficiency (EE) of wireless network becomes more and more important. However, in nmlti-relay-assisted systems, the related work obviously depends on the end-to-end performance, whereas EE of relays has not attracted enough attention. The authors propose an orthogonal frequency division multiplexing (OFDM) multi-relay system based on amplify and forward (AF) mode. Taking incorporating EE and remaining energy as factor, decision criteria of attending cooperation is designed. The EE based asynchronous power iteration method is presented, and the existence and convergence of nash equilibrium (NE) is proven. Furthermore, a joint algorithm in subcarrier pairing, relay selection and power allocation is given. Genetic algorithm (GA) and iteration method are integrated to improve the convergence speed additionally. Simulation demonstrates the obvious improvement of EE, decrease of power consumption and increase of lifetime in relays of this algorithm with the constraint of minimum data transmission rate.展开更多
This paper proposes rate-maximized (MR) joint subcarrier pairing (SP) and power allocation (PA) (MR-SP&PA), a novel scheme for maximizing the weighted sum rate of the orthogonal-frequency-division multiplexi...This paper proposes rate-maximized (MR) joint subcarrier pairing (SP) and power allocation (PA) (MR-SP&PA), a novel scheme for maximizing the weighted sum rate of the orthogonal-frequency-division multiplexing (OFDM) relaying system with a decode-and-forward (DF) relay. MR-SP&PA is based on the joint optimization of both SP and power allocation with total power constraint, and formulated as a mixed integer programming problem in the paper. The programming problem is then transformed to a convex optimization problem by using continuous relaxation, and solved in the Lagrangian dual domain. Simulation results show that MR-SP&PA can maximize the weighted sum rate under total power constraint and outperform equal power allocation (EPA) and proportion power allocation (PCG).展开更多
In this paper, a network scenario of two-way relaying over orthogonal frequency division multiplexing (OFDM) is considered, in which two nodes intend to exchange the information via a relay using physical-layer netw...In this paper, a network scenario of two-way relaying over orthogonal frequency division multiplexing (OFDM) is considered, in which two nodes intend to exchange the information via a relay using physical-layer network coding (PLNC). Assuming that the full channel knowledge is available, an optimization problem, which maximizes the achievable sum rate under a sum-power constraint, is investigated. It is shown that the optimization problem is non-convex, which is difficult to find the global optimum solution in terms of the computational complexity. In consequence, a low-complexity optimal power allocation scheme is proposed for practice implementation. A link capacity diagram is first employed for power allocation on each subcarrier. Subsequently, an equivalent relaxed optimization problem and Karush-Kuhn-Tucker (KKT) conditions are developed for power allocation among each subcarrier. Simulation results demonstrate that the substantial capacity gains are achieved by implementing the proposed schemes efficiently with a low-complexity computational effort.展开更多
文摘In this paper, an enhanced greedy bit and power allocation algorithms for orthogonal frequency division multiplexing (OFDM) communication systems are introduced. These algorithms combine low complexity greedy power allocation algorithms with a simplified maximum ratio combining (MRC) precoding technique at the transmitter for maximizing the average data throughput of OFDM communication systems. Results of computer simulations show that precoding is an effective technique for improving the throughput performance of the proposed bit and power allocation algorithms.
基金supported partly by the Postdoctoral Science Foundation of Chinathe National Natural Science Foundation of China(60572039).
文摘To improve the performance of a multiuser MIMO-OFDM system with imperfect channel status information, a downlink adaptive resource allocation algorithm which combines space-time block coding and beam forming (STBC-BF) is proposed. The algorithm allocates the subcarriers with a shared manner. A zero forcing processing with joint Rx-Tx is used to suppress the co-channel interference (CCI) and to construct uncorrelated channels for STBC. An adaptive power allocation for the STBC equivalent channels can increase signal to interference and noise ratio at the receiver. Simulation results show that under the condition of an imperfect CSI, the proposed algorithm improves the system performance and reduces the number of BS transmit antennas required.
基金This project was supported bythe National Natural Science Foundation of China (60272079) the National High Technol-ogy Research and Development Plan Project of China (2001AA123014) .
文摘A power allocation scheme for multi-user multiple-input multiple-output orthogonal frequency division multiplexing (MI- MO-OFDM) systems with channel state information (CSI) on transmitter and receiver is pressed. Multi-user lower allocation can be decoupled into single user lower allocation throughout null space mapping of multi-user channel and lower allocation can be performed throughout spatial-spectral water-filling for per user.To deal with more users in system and fading correlation,scheduling is oerformed to maintain the gain of power allocation.The proposed scheme can substantially improve system's spectral efficiency with low complexity.Simulation results validate the accuracy of theoretic analyses.
基金the National Natural Science Foundation of China (No.90104019).
文摘The presented scheme named M-CAP (Maximum CAPacity) uses the CSI (Channel State Information) and its statistics to deduce an equivalent channel according to which the transmit power is allocated to the subchannels. And then modulation scheme is determined adaptively according to the power allocated to each subchannel. The advantage of the M-CAP scheme is that it combines power allocation and adaptive modulation while maintaining a large capacity. We demonstrate by computer simulations that the proposed M-CAP scheme can significantly improve system performance compared with the traditional schemes.
基金supported by China NSF Grants(61631020)the Fundamental Research Funds for the Central Universities(NP2018103,NE2017103,NC2017003)
文摘This paper investigates subcarrier and power allocation in a multi-UAV OFDM system.The study considers a practical scenario,where certain subcarriers are unavailable for dynamic subcarrier allocation,on account of pre-allocation for burst transmissions.We first propose a novel iterative algorithm to jointly optimize subcarrier and power allocation,so as to maximize the sum rate of the uplink transmission in the multiUAV OFDM system.The key idea behind our solution is converting the nontrivial allocation problem into a weighted mean square error(MSE) problem.By this means,the allocation problem can be solved by the alternating optimization method.Besides,aiming at a lower-complexity solution,we propose a heuristic allocation scheme,where subcarrier allocation and transmit power allocation are separately optimized.In the heuristic scheme,closedform solution can be obtained for power allocation.Simulation results demonstrate that in the presence of stretched subcarrier resource,the proposed iterative joint optimization algorithm can significantly outperform the heuristic scheme,offering a higher sum rate.
文摘Due to their spectrum shaping capability and high adaptability, the multi-carrier systems are considered as prime candidates for use in the Cognitive Radio (CR) networks. In these structures, the deactivation of the primary users’ (PUs) bands makes the secondary users (SUs) use a limited number of sub-carriers, so the total capacity of CR networks is reduced. However, multiple transmit antennas can be applied to OFDM- based CR to compensate for such a low capacity. The present study investigates the problem of power allo-cation in MIMO-OFDM based CR Networks. The objective is maximizing the total capacity of CR systems in the downlink path under both interference on the PUs’ bands and maximum power of the CR transmitter constraints. It is shown that the optimal solution has high computational complexity, and therefore, an effi-cient sub-optimal algorithm is suggested for this application. As simulation results show, the suggested algo-rithm in the present paper is more enhanced and efficient than the previous algorithms.
基金Supported by the National Natural High-Tech Research and Development Plan of China (No. 2009AA011801)the National Natural Science Foundation of China (No. 60832007)
文摘Orthogonal frequency division multiplexing(OFDM) is an attractive modulation candidate for Cognitive Radio(CR) networks.Effective and reliable subcarrier power allocation in OFDM-based Cognitive Radio(CR) networks is a challenging problem.This paper focuses on the power allocation for OFDM-based Cognitive Radio(CR) networks.Our objective is to maximize the total transmission rates of Secondary Users(SU) by adjusting the power of subcarrier while the interference introduced to the Primary User(PU) is within a certain range and the total power of subcarrier is not beyond the total power constraint.We investigate the optimal power allocation algorithm for OFDM-based Cog-nitive Radio(CR) based on convex optimization theory.Then,because of high complexity of the op-timal power allocation algorithm,we propose an effective suboptimal power loading scheme.Theory analysis and simulation results show that the performance of the suboptimal power allocation algorithm is close to the performance of the optimal power allocation algorithm,while the complexity of the suboptimal power allocation algorithm is much lower.
基金supported by the National Natural Science Foundation of China(NSFC)(No.61501527)State’s Key Project of Research and Development Plan(No.2016YFE0122900-3)+1 种基金the Fundamental Research Funds for the Central Universities,Basic Research Foundation of Science Technology and Innovation Commission of Shenzhen Municipality(No.JCYJ20150630153033410)SYSU-CMU Shunde International Joint Research Institute and 2016 Major Project of Collaborative Innovation in Guangzhou(Research and Application of Ground Satellite Communicaiton Systems for Space Broadband Information Networks)
文摘Two-way decode-and-forward(DF) relay technique is an efficient method to improve system performance in 5G networks.However,traditional orthogonal frequency division multiplexing(OFDM) based two-way relay systems only consider a per-subcarrier relay strategy,which treats each subcarrier as a separate channel,which results in significant sum rate loss,especially in fading environments.In this paper,a joint coding scheme over multiple subcarriers is involved for multipair users in two-way relay systems to obtain multiuser diversity.A generalized subcarrier pairing strategy is proposed to permit each user-pair to occupy different subcarriers during the two transmission phases,i.e.,the multiple access and broadcast phases.Moreover,a low complexity joint resource allocation scheme is proposed to improve the spectrum efficiency with an additional multi-user diversity gain.Some numerical simulations are finally provided to verify the efficacy of our proposal.
文摘In cognitive radio (CR),power allocation plays an important role in protecting primary user from disturbance of secondary user. Some existing studies about power allocation in CR utilize 'interference temperature' to achieve this protection,which might not be suitable for the OFDM-based CR. Thus in this paper,power allocation problem in multi-user orthogonal frequency division multiplexing (OFDM) and distributed antenna cognitive radio with radio over fiber (RoF) is firstly modeled as an optimization problem,where the limitation on secondary user is not 'interference temperature',but that total throughput of primary user in all the resource units (RUs) must be beyond the given threshold. Moreover,based on the theorem about maximizing the total throughput of secondary user,equal power allocation algorithm is introduced. Furthermore,as the optimization problem for power allocation is not convex,it is transformed to be a convex one with geometric programming,where the solution can be obtained using duality and Karush-Kuhn-Tucker (KKT) conditions to form the optimal power allocation algorithm. Finally,extensive simulation results illustrate the significant performance improvement of the optimal algorithm compared to the existing algorithm and equal power allocation algorithm.
基金supported by the Hi-Tech Research and Development Program of China(2014AA01A705)
文摘Getting along with the improvement of green communications, the energy efficiency (EE) of wireless network becomes more and more important. However, in nmlti-relay-assisted systems, the related work obviously depends on the end-to-end performance, whereas EE of relays has not attracted enough attention. The authors propose an orthogonal frequency division multiplexing (OFDM) multi-relay system based on amplify and forward (AF) mode. Taking incorporating EE and remaining energy as factor, decision criteria of attending cooperation is designed. The EE based asynchronous power iteration method is presented, and the existence and convergence of nash equilibrium (NE) is proven. Furthermore, a joint algorithm in subcarrier pairing, relay selection and power allocation is given. Genetic algorithm (GA) and iteration method are integrated to improve the convergence speed additionally. Simulation demonstrates the obvious improvement of EE, decrease of power consumption and increase of lifetime in relays of this algorithm with the constraint of minimum data transmission rate.
基金supported by the National Key Technology R&D Program (2008BAH30B10)the National Natural Science Foundation of China (60972070)+1 种基金the Chongqing Municipal Science & Technology Development Program,China (CSTC2010A-C2143)the Natural Science Foundation of Chongqing,China (CSTC2009B-A2090)
文摘This paper proposes rate-maximized (MR) joint subcarrier pairing (SP) and power allocation (PA) (MR-SP&PA), a novel scheme for maximizing the weighted sum rate of the orthogonal-frequency-division multiplexing (OFDM) relaying system with a decode-and-forward (DF) relay. MR-SP&PA is based on the joint optimization of both SP and power allocation with total power constraint, and formulated as a mixed integer programming problem in the paper. The programming problem is then transformed to a convex optimization problem by using continuous relaxation, and solved in the Lagrangian dual domain. Simulation results show that MR-SP&PA can maximize the weighted sum rate under total power constraint and outperform equal power allocation (EPA) and proportion power allocation (PCG).
基金supported by the National Natural Science Foundation of China (60496315,60802009)the Hi-Tech Research and Development Program of China (2008AA01Z204,2009AA011202,2009AA01Z205)the International Science and Technology Cooperation Programmer of China (2008DFA11630)
文摘In this paper, a network scenario of two-way relaying over orthogonal frequency division multiplexing (OFDM) is considered, in which two nodes intend to exchange the information via a relay using physical-layer network coding (PLNC). Assuming that the full channel knowledge is available, an optimization problem, which maximizes the achievable sum rate under a sum-power constraint, is investigated. It is shown that the optimization problem is non-convex, which is difficult to find the global optimum solution in terms of the computational complexity. In consequence, a low-complexity optimal power allocation scheme is proposed for practice implementation. A link capacity diagram is first employed for power allocation on each subcarrier. Subsequently, an equivalent relaxed optimization problem and Karush-Kuhn-Tucker (KKT) conditions are developed for power allocation among each subcarrier. Simulation results demonstrate that the substantial capacity gains are achieved by implementing the proposed schemes efficiently with a low-complexity computational effort.