Electroluminescent devices based on organic semiconductors have attracted significant attention owing to their promising applications in flat-panel displays.The conventional display pixel consisting of side-by-side ar...Electroluminescent devices based on organic semiconductors have attracted significant attention owing to their promising applications in flat-panel displays.The conventional display pixel consisting of side-by-side arrayed red,green and blue subpixels represents the mature technology but bears an intrinsic deficiency of a low pixel density.Constructing an individual color-tunable pixel that comprises vertically stacked subpixels is considered an advanced technology.Although color-tunable organic light-emitting diodes(OLEDs)have been fabricated using the vacuum deposition of small molecules,the solution processing of conjugated polymers would enable a much simpler and inexpensive manufacturing process.Here we present the all-solution processing of color-tunable OLEDs comprising two vertically stacked polymer emitters.A thin layer of highly conducting and transparent silver nanowires is introduced as the intermediate charge injection contact,which allows the emission spectrum and intensity of the tandem devices to be seamlessly manipulated.To demonstrate a viable application of this technology,a 4-by-4 pixelated matrix color-tunable display was fabricated.展开更多
基金supported by the Cluster of Excellence‘Engineering of Advanced Materials’(EAM)at the University of Erlangen-Nurembergthe support of the EU-project SOLPROCEL(‘Solution processed high performance transparent organic photovoltaic cells’,Grant No.604506)+2 种基金the financial support from the China Scholarship Council(CSC)the financial support from the South China University of Technology and Deutscher Akademischer Austausch Dienst(DAAD)the financial support through the‘Aufbruch Bayern’initiative of the state of Bavaria.
文摘Electroluminescent devices based on organic semiconductors have attracted significant attention owing to their promising applications in flat-panel displays.The conventional display pixel consisting of side-by-side arrayed red,green and blue subpixels represents the mature technology but bears an intrinsic deficiency of a low pixel density.Constructing an individual color-tunable pixel that comprises vertically stacked subpixels is considered an advanced technology.Although color-tunable organic light-emitting diodes(OLEDs)have been fabricated using the vacuum deposition of small molecules,the solution processing of conjugated polymers would enable a much simpler and inexpensive manufacturing process.Here we present the all-solution processing of color-tunable OLEDs comprising two vertically stacked polymer emitters.A thin layer of highly conducting and transparent silver nanowires is introduced as the intermediate charge injection contact,which allows the emission spectrum and intensity of the tandem devices to be seamlessly manipulated.To demonstrate a viable application of this technology,a 4-by-4 pixelated matrix color-tunable display was fabricated.