期刊文献+
共找到3,145篇文章
< 1 2 158 >
每页显示 20 50 100
Bimetallic In_(2)O_(3)/Bi_(2)O_(3) Catalysts Enable Highly Selective CO_(2) Electroreduction to Formate within Ultra-Broad Potential Windows 被引量:1
1
作者 Zhongxue Yang Hongzhi Wang +7 位作者 Xinze Bi Xiaojie Tan Yuezhu Zhao Wenhang Wang Yecheng Zou Huai ping Wang Hui Ning Mingbo Wu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期257-264,共8页
CO_(2)electrochemical reduction reaction(CO_(2)RR)to formate is a hopeful pathway for reducing CO_(2)and producing high-value chemicals,which needs highly selective catalysts with ultra-broad potential windows to meet... CO_(2)electrochemical reduction reaction(CO_(2)RR)to formate is a hopeful pathway for reducing CO_(2)and producing high-value chemicals,which needs highly selective catalysts with ultra-broad potential windows to meet the industrial demands.Herein,the nanorod-like bimetallic ln_(2)O_(3)/Bi_(2)O_(3)catalysts were successfully synthesized by pyrolysis of bimetallic InBi-MOF precursors.The abundant oxygen vacancies generated from the lattice mismatch of Bi_(2)O_(3)and ln_(2)O_(3)reduced the activation energy of CO_(2)to*CO_(2)·^(-)and improved the selectivity of*CO_(2)·^(-)to formate simultaneously.Meanwhile,the carbon skeleton derived from the pyrolysis of organic framework of InBi-MOF provided a conductive network to accelerate the electrons transmission.The catalyst exhibited an ultra-broad applied potential window of 1200 mV(from-0.4 to-1.6 V vs RHE),relativistic high Faradaic efficiency of formate(99.92%)and satisfactory stability after 30 h.The in situ FT-IR experiment and DFT calculation verified that the abundant oxygen vacancies on the surface of catalysts can easily absorb CO_(2)molecules,and oxygen vacancy path is dominant pathway.This work provides a convenient method to construct high-performance bimetallic catalysts for the industrial application of CO_(2)RR. 展开更多
关键词 bimetallic catalyst CO_(2)electrochemical reduction reaction FORMATE oxygen vacancy wide potential window
下载PDF
Porous silica nano-flowers stabilized Pt-Pd bimetallic nanoparticles as heterogeneous catalyst for efficiently synthesizing guaiacol from 2-methoxycyclohexanol
2
作者 Junbo Feng Junyan Wu +1 位作者 Dongdong Yan Yadong Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期222-233,共12页
Porous silica nano-flowers(KCC-1)immobilized Pt-Pd alloy NPs(Pt-Pd/KCC-1)with different mass ratios of Pd and Pt were successfully prepared by a facile in situ one-step reduction,using hydrazinium hydroxide as a reduc... Porous silica nano-flowers(KCC-1)immobilized Pt-Pd alloy NPs(Pt-Pd/KCC-1)with different mass ratios of Pd and Pt were successfully prepared by a facile in situ one-step reduction,using hydrazinium hydroxide as a reducing agent.The as-synthesized silica nanospheres possess radial fibers with a distance of 15 nm,exhibiting a high specific surface area(443.56 m^(2)·g^(-1)).Meanwhile,the obtained Pt-Pd alloy NPs are uniformly dispersed on the silica surface with a metallic particle size of 4-6 nm,which exist as metallic Pd and Pt on the surface of monodisperse KCC-1,showing the transfer of electrons from Pd to Pt.The as-synthesized 2.5%Pt-2.5%Pd/KCC-1 exhibited excellent catalytic activity and stability for the continuous dehydrogenation of 2-methoxycyclohexanol to prepare guaiacol.Compared with Pt or Pd single metal supported catalysts,the obtained 2.5%Pt-2.5%Pd/KCC-1 shows 97.2%conversion rate of 2-methoxycyclohexanol and 76.8%selectivity for guaiacol,which attributed to the significant synergistic effect of bimetallic Pt-Pd alloy NPs.Furthermore,turn over frequency value of the obtained 2.5%Pt-2.5%Pd/KCC-1 NPs achieved 4.36 s^(-1),showing higher catalytic efficiency than other two monometallic catalysts.Reaction pathways of dehydro-aromatization of 2-methoxycyclohexanol over the obtained catalyst are proposed.Consequently,the obtained 2.5%Pt-2.5%Pd/KCC-1 NPs prove their potential in the dehydrogenation of 2-methoxycyclohexanol,while the kinetics and mechanistic study of the dehydrogenation reaction over the catalyst in a continuous fixed-bed reactor may provide valuable information for the development of green,outstanding and powerful synthetic pathway of guaiacol. 展开更多
关键词 Supported catalyst Nanoparticles Dehydrogenation 2-Methoxycyclohexanol GUAIACOL
下载PDF
Realizing methanol synthesis from CO and water via the synergistic effect of Cu^(0)/Cu^(+)over Cu/ZrO_(2) catalyst
3
作者 Yuan Fang Fan Wang +10 位作者 Yang Chen Qian Lv Kun Jiang Hua Yang Huibo Zhao Peng Wang Yuyan Gan Lizhi Wu Yu Tang Xinhua Gao Li Tan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期126-134,I0004,共10页
The optimizing utilization of ca rbon resources has drawn wide attention all over the world,while exploiting the high-efficiency catalytic routes remains a challenge.Here,a direct methanol synthesis route is realized ... The optimizing utilization of ca rbon resources has drawn wide attention all over the world,while exploiting the high-efficiency catalytic routes remains a challenge.Here,a direct methanol synthesis route is realized from pure CO and H_(2)O over 10%Cu/t-ZrO_(2) catalyst,where the time yield of methanol is144.43 mmol mol_(Cu)^(-1)h^(-1)and the methanol selectivity in hydrocarbons is 100%,The Cu species highly dispersed in the t-ZrO_(2) support lead parts of them in the cationic state.The Cu^(+)sites contribute to the dissociation of H_(2)O,providing the H*source for methanol synthesis,while the formed Cu^(0) sites promote the absorption and transfer of H*during the reaction.Moreover,the H_(2)O is even a better H resource than H_(2) due to its better dissociation effectivity in this catalytic system.The present work offers a new approach for methanol synthesis from CO and new insight into the process of supplying H donor. 展开更多
关键词 H_(2)O CO METHANOL Cu-based catalysts t-ZrO_(2)
下载PDF
Metal-N_(4) model single‐atom catalyst with electroneutral quadri‐pyridine macrocyclic ligand for CO_(2) electroreduction
4
作者 Jian‐Zhao Peng Yin‐Long Li +7 位作者 Yao‐Ti Cheng Fu‐Zhi Li Bo Cao Qing Wang Xian Yue Guo‐Tao Lai Yang‐Gang Wang Jun Gu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期122-133,共12页
Metal–N–C single‐atom catalysts,mostly prepared from pyrolysis of metalorganic precursors,are widely used in heterogeneous electrocatalysis.Since metal sites with diverse local structures coexist in this type of ma... Metal–N–C single‐atom catalysts,mostly prepared from pyrolysis of metalorganic precursors,are widely used in heterogeneous electrocatalysis.Since metal sites with diverse local structures coexist in this type of material and it is challenging to characterize the local structure,a reliable structure–property relationship is difficult to establish.Conjugated macrocyclic complexes adsorbed on carbon support are well‐defined models to mimic the singleatom catalysts.Metal–N_(4) site with four electroneutral pyridine‐type ligands embedded in a graphene layer is the most commonly proposed structure of the active site of single‐atom catalysts,but its molecular counterpart has not been reported.In this work,we synthesized the conjugated macrocyclic complexes with a metal center(Co,Fe,or Ni)coordinated with four electroneutral pyridinic ligands as model catalysts for CO_(2) electroreduction.For comparison,the complexes with anionic quadri‐pyridine macrocyclic ligand were also prepared.The Co complex with the electroneutral ligand expressed a turnover frequency of CO formation more than an order of magnitude higher than that of the Co complex with the anionic ligand.Constrained ab initio molecular dynamics simulations based on the well‐defined structures of the model catalysts indicate that the Co complex with the electroneutral ligand possesses a stronger ability to mediate electron transfer from carbon to CO_(2). 展开更多
关键词 ab initio molecular dynamics CO_(2)reduction electrocatalysis model catalyst single‐atom catalyst
下载PDF
Two-dimensional C_(2)N-based single-atom catalyst with complex microenvironment for enhanced electrochemical nitrogen reduction:A descriptor-based design
5
作者 Enduo Dai Wei An +4 位作者 Ruixian Guo Xugen Shi Yunyi Li Yibo Wang Mingming Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期110-119,I0003,共11页
The catalytic descriptor with operational feasibility is highly desired towards rational design of high-performance catalyst especially the electrode/electrolyte solution interface working under mild conditions.Herein... The catalytic descriptor with operational feasibility is highly desired towards rational design of high-performance catalyst especially the electrode/electrolyte solution interface working under mild conditions.Herein,we demonstrate that the descriptorΩparameterized by readily accessible intrinsic properties of metal center and coordination is highly operational and efficient in rational design of single-atom catalyst(SAC)for driving electrochemical nitrogen reduction(NRR).Using twodimensional metal(M)-B_(x)P_(y)S_(z)N_m@C_(2)N as prototype SAC models,we reveal that^(*)N_(2)+(H~++e~-)→^(*)N_(2)H acts predominantly as the potential-limiting step(PLS)of NRR on M-B_(2)P_(2)S_(2)@C_(2)N and M-B_(1)P_(1)S_(1)N_(3)@C_(2)N regardless of the distinction in coordination microenvironment.Among the 28 screened M active sites,withΩvalues close to the optimal 4,M-B_(2)P_(2)S_(2)@C_(2)N(M=V(Ω=3.53),Mo(Ω=5.12),and W(Ω=3.92))and M-B_(1)P_(1)S_(1)N_(3)@C_(2)N(M=V(Ω=3.00),Mo(Ω=4.34),and W(Ω=3.32))yield the lowered limiting potential(U_(L))as-0.45,-0.54.-0.36,-0.58,-0.25,and-0.24 V,respectively,thus making them the promising NRR catalysts.More importantly,these SACs are located around the top of volcano-shape plot of U_(L) versusΩ,re-validatingΩas an effective descriptor for accurately predicting the high-activity NRR SACs even with complex coordination.Our study unravels the relationship between active-site structure and NRR performance via the descriptorΩ,which can be applied to other important sustainable electrocatalytic reactions involving activation of small molecules viaσ-donation andπ^(*)-backdonation mechanism. 展开更多
关键词 ELECTROCATALYSIS N_(2) reduction Single-atom catalyst DESCRIPTOR DFT
下载PDF
Elucidating the structure-activity relationship of Cu-Ag bimetallic catalysts for electrochemical CO_(2) reduction
6
作者 Qining Huang Lili Wan +1 位作者 Qingxuan Ren Jingshan Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期345-351,I0009,共8页
Developing bimetallic catalysts is an effective strategy for enhancing the activity and selectivity of electrochemical CO_(2) reduction reactions,where understanding the structure-activity relationship is essential fo... Developing bimetallic catalysts is an effective strategy for enhancing the activity and selectivity of electrochemical CO_(2) reduction reactions,where understanding the structure-activity relationship is essential for catalyst design.Herein,we prepared two Cu-Ag bimetallic catalysts with Ag nanoparticles attached to the top or the bottom of Cu nanowires.When tested in a flow cell,the Cu-Ag catalyst with Ag nanoparticles on the bottom achieved a faradaic efficiency of 54%for ethylene production,much higher than the catalyst with Ag nanoparticles on the top.The catalysts were further studied in the H-cell and zero-gap MEA cell.It was found that placing the two metals in the intensified reaction zone is crucial to triggering the tandem reaction of bimetallic catalysts.Our work elucidates the structure-activity relationship of bimetallic catalysts for CO_(2) reduction and demonstrates the importance of considering both catalyst structures and cell characteristics to achieve high activity and selectivity. 展开更多
关键词 Electrochemical CO_(2)reduction Bimetallic catalyst CU-AG Structure-activity relationship
下载PDF
Non-thermal atmospheric-pressure positive pulsating corona discharge in degradation of textile dye Reactive Blue 19 enhanced by Bi_(2)O_(3) catalyst
7
作者 Milica PETROVIC Dragan RADIVOJEVIC +4 位作者 Sasa RANCEV Nena VELINOV Milos KOSTIC Danijela BOJIC Aleksandar BOJIC 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第2期104-113,共10页
In this work,monoclinic Bi_(2)O_(3) was applied for the first time,to the best of our knowledge,as a catalyst in the process of dye degradation by a non-thermal atmospheric-pressure positive pulsating corona discharge... In this work,monoclinic Bi_(2)O_(3) was applied for the first time,to the best of our knowledge,as a catalyst in the process of dye degradation by a non-thermal atmospheric-pressure positive pulsating corona discharge.The research focused on the interaction of the plasma-generated species and the catalyst,as well as the role of the catalyst in the degradation process.Plasma decomposition of the anthraquinone reactive dye Reactive Blue 19(RB 19) was performed in a selfmade reactor system.Bi_(2)O_(3) was prepared by electrodeposition followed by thermal treatment,and characterized by x-ray diffraction,scanning electron microscopy and energy-dispersive xray techniques.It was observed that the catalyst promoted decomposition of plasma-generated H_(2)O_(2) into ·OH radicals,the principal dye-degrading reagent,which further attacked the dye molecules.The catalyst improved the decolorization rate by 2.5 times,the energy yield by 93.4%and total organic carbon removal by 7.1%.Excitation of the catalyst mostly occurred through strikes by plasma-generated reactive ions and radical species from the air,accelerated by the electric field,as well as by fast electrons with an energy of up to 15 eV generated by the streamers reaching the liquid surface.These strikes transferred the energy to the catalyst and created the electrons and holes,which further reacted with H_(2)O_(2) and water,producing ·OH radicals.This was indentified as the primary role of the catalyst in this process.Decolorization reactions followed pseudo first-order kinetics.Production of H_(2)O_(2) and the dye degradation rate increased with increase in the input voltage.The optimal catalyst dose was 500 mg·dm^(-3).The decolorization rate was a little lower in river water compared with that in deionized water due to the side reactions of ·OH radicals with organic matter and inorganic ions dissolved in the river water. 展开更多
关键词 corona RB 19 Bi_(2)O_(3) catalyst DEGRADATION
下载PDF
Electrolyte manipulation on Cu-based electrocatalysts for electrochemical CO_(2) reduction
8
作者 Hexin Zhou Wanlong Xi +4 位作者 Peng Yang Huiting Huang Jia Tian Marina Ratova Dan Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期201-222,共22页
Electrocatalytic reduction of CO_(2)is crucial for environmental sustainability and renewable energy storage,with Cu-based catalysts excelling in producing high-value C_(2+)products.However,a comprehensive analysis of... Electrocatalytic reduction of CO_(2)is crucial for environmental sustainability and renewable energy storage,with Cu-based catalysts excelling in producing high-value C_(2+)products.However,a comprehensive analysis of how specific electrolyte influences Cu-based catalysts is lacking.This review addresses this gap by focusing on how electrolytes impact surface reconstruction and the CO_(2) reduction process on Cu-based electrocatalysts,identifying specific electrolyte compositions that enhance the density and stability of active sites,and providing insights into how different electrolyte environments modulate the selectivity and efficiency of C_(2+)product formation.The review begins by exploring how electrolytes induce favorable surface reconstruction in Cu-based catalysts,affecting surface roughness through dissolution-redeposition of Cu species and interactions with halogens and molecular additives.It also covers changes in crystalline facets of Cu and Cu_(2)O,and oxidation states,highlighting transitions from Cu^(0) to Cu^(δ+)and the stabilization of Cu^(+).The role of electrolytes in the C–C coupling process is examined,emphasizing their effects in modulating mass and charge transfer,CO_(2) adsorption,intermediate evolution,and product desorption.Subsequently,the mechanisms by non-aqueous electrolytes,including organic solvents,ionic liquids,and mixed electrolytes,affecting CO_(2) reduction are analyzed,highlighting the unique advantages and challenges of each type.The review concludes by addressing current challenges,proposing solutions,and research directions,such as optimizing electrolyte composition by integrating diverse cations and anions and employing advanced in-situ characterization techniques.These insights can significantly enhance CO_(2)reduction performance on Cu-based electrocatalysts,advancing efficient and sustainable green energy technologies. 展开更多
关键词 CO_(2)reduction reaction Cu-based catalyst ELECTROLYTE Surface reconstruction Intermediates evolution
下载PDF
Enhancing selectivity in acidic CO_(2) electrolysis:Cation effects and catalyst innovation
9
作者 Zichao Huang Tinghui Yang +4 位作者 Yingbing Zhang Chaoqun Guan Wenke Gui Min Kuang Jianping Yang 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期61-80,共20页
The electrochemical reduction of CO_(2)(eCO_(2)R)under ambient conditions is crucial for reducing carbon emissions and achieving carbon neutrality.Despite progress with alkaline and neutral electrolytes,their efficien... The electrochemical reduction of CO_(2)(eCO_(2)R)under ambient conditions is crucial for reducing carbon emissions and achieving carbon neutrality.Despite progress with alkaline and neutral electrolytes,their efficiency is limited by(bi)carbonates formation.Acidic media have emerged as a solution,addressing the(bi)carbonates challenge but introducing the issue of the hydrogen evolu-tion reaction(HER),which reduces CO_(2) conversion efficiency in acidic environments.This review focuses on enhancing the selectivity of acidic CO_(2) electrolysis.It commences with an overview of the latest advancements in acidic CO_(2) electrolysis,focusing on product selectivity and electrocatalytic activity enhancements.It then delves into the critical factors shaping selectivity in acidic CO_(2) electrolysis,with a special emphasis on the influence of cations and catalyst design.Finally,the research challenges and personal perspectives of acidic CO_(2) electrolysis are suggested. 展开更多
关键词 ACIDIC CO_(2) electrolysis High selectivity Cation effects catalyst design Competitive HER
下载PDF
Cu-based materials for electrocatalytic CO_(2) to alcohols:Reaction mechanism,catalyst categories,and regulation strategies
10
作者 Yaru Lei Yaxin Niu +8 位作者 Xiaolong Tang Xiangtao Yu Xiubing Huang Xiaoqiu Lin Honghong Yi Shunzheng Zhao Jiaying Jiang Jiyue Zhang Fengyu Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期593-611,I0013,共20页
Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in re... Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in recent decades.Among the many products of CO_(2)RR(carbon monoxide,acids,aldehydes and alcohols,olefins,etc.),alcohols(methanol,ethanol,propanol,etc.)have a higher market value and energy density,but it is also more difficult to produce.Copper is known to be effective in catalyzing CO_(2) to high valueadded alcohols,but with poor selectivity.The progress of Cu-based catalysts for the selective generation of alcohols,including copper oxides,bimetals,single atoms and composites is reviewed.Meanwhile,to improve Cu-based catalyst activity and modulate product selectivity,the modulation strategies are straighten out,including morphological regulation,crystalline surface,oxidation state,as well as elemental doping and defect engineering.Based on the research progress of electrocatalytic CO_(2) reduction for alcohol production on Cu-based materials,the reaction pathways and the key intermediates of the electrocatalytic CO_(2)RR to methanol,ethanol and propanol are summarized.Finally,the problems of traditional electrocatalytic CO_(2)RR are introduced,and the future applications of machine learning and theoretical calculations are prospected.An in-depth discussion and a comprehensive review of the reaction mechanism,catalyst types and regulation strategies were carried out with a view to promoting the development of electrocatalytic CO_(2)RR to alcohols. 展开更多
关键词 Electrocatalytic CO_(2)RR Cu-based catalyst ALCOHOLS Reaction mechanism Regulation strategies
下载PDF
Sabatier principle guiding the design of cathode catalysts for Li-CO_(2) batteries
11
作者 Haonan Xie Yimin Zhang +4 位作者 Biao Chen Chunnian He Chunsheng Shi Enzuo Liu Naiqin Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期585-592,I0012,共9页
The Sabatier principle has been widely used for designing electrocatalysts for energy conversion applications,but it is rarely mentioned in the research of cathode catalyst of Li-CO_(2) batteries.In our work,the"... The Sabatier principle has been widely used for designing electrocatalysts for energy conversion applications,but it is rarely mentioned in the research of cathode catalyst of Li-CO_(2) batteries.In our work,the"volcanic"relationship between the catalytic activity and the adsorption energy of the catalyst to the intermediates is first demonstrated based on the first-principles calculation,which meets the Sabatier principle and can be used to design the cathode catalysts.The increases in the number of nitrogenvacancy in WN shift the d-band center and increase the interaction with the reactants.The catalytic activity increases first and then decreases with the increase of adsorption energy,which was proved in the experiment.The optimal catalyst for moderate adsorption of intermediate makes the thin LiaCO_(3) distribute evenly.It exhibits a median voltage difference of 0.68 V and an energy efficiency of 84.33%at20μA cm^(-2)with a limited capacity of 200μA h cm^(-2). 展开更多
关键词 Sabatier principle Bidirectional catalyst Transition metal nitrides Nitrogen-vacancy Li-CO_(2) batteries
下载PDF
Polygonal mesopores microflower catalysts for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene to 2-nitro-4-methylsulfonylbenzoic acid in a continuous-flow microreactor
12
作者 Jianzhi Wang Xugen Li +6 位作者 Cheng Zhang Yuan Pu Jiawu Liu Jie Liu Yanping Liu Xiao Lin Faquan Yu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第9期212-221,共10页
The development of efficient systems for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene(NMST)to 2-nitro-4-methylsulfonyl benzoic acid(NMSBA)with atmospheric air or molecular oxygen in alkaline medium prese... The development of efficient systems for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene(NMST)to 2-nitro-4-methylsulfonyl benzoic acid(NMSBA)with atmospheric air or molecular oxygen in alkaline medium presents a significant challenge for the chemical industry.Here,we report the synthesis of FeOOH/Fe_(3)O_(4)/metal-organic framework(MOF)polygonal mesopores microflower templated from a MIL-88B(Fe)at room temperature,which exposes polygonal mesopores with atomistic edge steps and lattice defects.The obtained FeOOH/Fe_(3)O_(4)/MOF catalyst was adsorbed onto glass beads and then introduced into the microchannel reactor.In the alkaline environment,oxygen was used as oxidant to catalyze the oxidation of NMST to NMSBA,showing impressive performance.This sustainable system utilizes oxygen as a clean oxidant in an inexpensive and environmentally friendly NaOH/methanol mixture.The position and type of substituent critically affect the products.Additionally,this sustainable protocol enabled gram-scale preparation of carboxylic acid and benzyl alcohol derivatives with high chemoselectivities.Finally,the reactions can be conducted in a pressure reactor,which can conserve oxygen and prevent solvent loss.Moreover,compared with the traditional batch reactor,the self-built microchannel reactor can accelerate the reaction rate,shorten the reaction time,and enhance the selectivity of catalytic oxidation reactions.This approach contributes to environmental protection and holds potential for industrial applications. 展开更多
关键词 2-nitro-4-methylsulfonylbenzoic 2-nitro-4-methylsulfonyltoluene FeOOH/Fe3O4/MOF catalyst MICROREACTOR Oxidation
下载PDF
Tuning the product selectivity of dimethyl oxalate hydrogenation over WO_(x) modified Cu/SiO_(2) catalysts
13
作者 Zheng Li Zhuo Ma +9 位作者 Yihui Li Ziang Zhao Yuan Tan Ziyin Liu Xingkun Chen Nian Lei Huigang Wang Wei Lu Hejun Zhu Yunjie Ding 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期128-138,I0004,共12页
Product selectivity and reaction pathway are highly dependent on surface structure of heterogeneous catalysts.For vapor-phase hydrogenation of dimethyl oxalate(DMO),"EG route"(DMO→methyl glycolate(MG)ethyle... Product selectivity and reaction pathway are highly dependent on surface structure of heterogeneous catalysts.For vapor-phase hydrogenation of dimethyl oxalate(DMO),"EG route"(DMO→methyl glycolate(MG)ethylene glycol(EG)→ethanol(ET))and"MA route"(DMO→MG→methyl acetate(MA))were proposed over traditional Cu based catalysts and Mo-based or Fe-based catalysts,respectively.Herein,tunable yield of ET(93.7%)and MA(72.1%)were obtained through different reaction routes over WO_(x) modified Cu/SiO_(2) catalysts,and the corresponding reaction route was further proved by kinetic study and in-situ DRIFTS technology.Mechanistic studies demonstrated that H_(2) activation ability,acid density and Cu-WO_(x) interaction on the catalysts were tuned by regulating the surface W density,which resulted in the different reaction pathway and product selectivity.What's more,high yield of MA produced from DMO hydrogenation was firstly reported with the H_(2) pressure as low as 0.5 MPa. 展开更多
关键词 ETHANOL Dimethyl oxalate Selective hydrogenation Methyl acetate WCu/SiO_(2)catalyst
下载PDF
Molecular engineering binuclear copper catalysts for selective CO_(2) reduction to C_(2) products
14
作者 Qi Zhao Kai Lei +2 位作者 Bao Yu Xia Rachel Crespo-Otero Devis Di Tommaso 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期166-173,I0005,共9页
Molecular copper catalysts serve as exemplary models for correlating the structure-reaction-mechanism relationship in the electrochemical CO_(2) reduction(eCO_(2)R),owing to their adaptable environments surrounding th... Molecular copper catalysts serve as exemplary models for correlating the structure-reaction-mechanism relationship in the electrochemical CO_(2) reduction(eCO_(2)R),owing to their adaptable environments surrounding the copper metal centres.This investigation,employing density functional theory calculations,focuses on a novel family of binuclear Cu molecular catalysts.The modulation of their coordination configuration through the introduction of organic groups aims to assess their efficacy in converting CO_(2) to C_(2)products.Our findings highlight the crucial role of chemical valence state in shaping the characteristics of binuclear Cu catalysts,consequently influencing the eCO_(2)R behaviour,Notably,the Cu(Ⅱ)Cu(Ⅱ)macrocycle catalyst exhibits enhanced suppression of the hydrogen evolution reaction(HER),facilitating proton trans fer and the eCO_(2)R process.Fu rthermore,we explo re the impact of diverse electro n-withdrawing and electron-donating groups coordinated to the macrocycle(R=-F,-H,and-OCH_3)on the electron distribution in the molecular catalysts.Strategic placement of-OCH_3 groups in the macrocycles leads to a favourable oxidation state of the Cu centres and subsequent C-C coupling to form C_(2) products.This research provides fundamental insights into the design and optimization of binuclear Cu molecular catalysts for the electrochemical conversion of CO_(2) to value-added C_(2) products. 展开更多
关键词 Molecular catalyst design Selective CO_(2)reduction C_(2)products Density functional theory calculations
下载PDF
CO_(2)-assisted oxidation dehydrogenation of light alkanes over metal-based heterogeneous catalysts
15
作者 Yingbin Zheng Xinbao Zhang +4 位作者 Junjie Li Jie An Longya Xu Xiujie Li Xiangxue Zhu 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第10期40-69,共30页
Light olefins are important platform feedstocks in the petrochemical industry,and the ongoing global economic development has driven sustained growth in demand for these compounds.The dehydrogenation of alkanes,derive... Light olefins are important platform feedstocks in the petrochemical industry,and the ongoing global economic development has driven sustained growth in demand for these compounds.The dehydrogenation of alkanes,derived from shale gas,serves as an alternative olefins production route.Concurrently,the target of realizing carbon neutrality promotes the comprehensive utilization of greenhouse gas.The integrated process of light alkanes dehydrogenation and carbon dioxide reduction(CO_(2)-ODH)can produce light olefins and realize resource utilization of CO_(2),which has gained wide popularity.With the introduction of CO_(2),coke deposition and metal reduction encountered in alkanes dehydrogenation reactions can be effectively suppressed.CO_(2)-assisted alkanes dehydrogenation can also reduce the risk of potential explosion hazard associated with O_(2)-oxidative dehydrogenation reactions.Recent investigations into various metal-based catalysts including mono-and bi-metallic alloys and oxides have displayed promising performances due to their unique properties.This paper provides the comprehensive review and critical analysis of advancements in the CO_(2)-assisted oxidative dehydrogenation of light alkanes(C2-C4)on metal-based catalysts developed in recent years.Moreover,it offers a comparative summary of the structural properties,catalytic activities,and reaction mechanisms over various active sites,providing valuable insights for the future design of dehydrogenation catalysts. 展开更多
关键词 Light alkanes dehydrogenation CO_(2)utilization Metal-based catalysts Light olefins Coupling reaction
下载PDF
Preparation of palladium-based catalyst by plasma-assisted atomic layer deposition and its applications in CO_(2) hydrogenation reduction
16
作者 唐守贤 田地 +4 位作者 李筝 王正铎 刘博文 程久珊 刘忠伟 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期31-39,共9页
Supported Pd catalyst is an important noble metal material in recent years due to its high catalytic performance in CO_(2)hydrogenation.A fluidized-bed plasma assisted atomic layer deposition(FP-ALD) process is report... Supported Pd catalyst is an important noble metal material in recent years due to its high catalytic performance in CO_(2)hydrogenation.A fluidized-bed plasma assisted atomic layer deposition(FP-ALD) process is reported to fabricate Pd nanoparticle catalyst over γ-Al_(2)O_(3)or Fe_(2)O_(3)/γ-Al_(2)O_(3)support,using palladium hexafluoroacetylacetonate as the Pd precursor and H_(2)plasma as counter-reactant.Scanning transmission electron microscopy exhibits that highdensity Pd nanoparticles are uniformly dispersed over Fe_(2)O_(3)/γ-Al_(2)O_(3)support with an average diameter of 4.4 nm.The deposited Pd-Fe_(2)O_(3)/γ-Al_(2)O_(3)shows excellent catalytic performance for CO_(2)hydrogenation in a dielectric barrier discharge reactor.Under a typical condition of H_(2)to CO_(2)ratio of 4 in the feed gas,the discharge power of 19.6 W,and gas hourly space velocity of10000 h^(-1),the conversion of CO_(2)is as high as 16.3% with CH_(3)OH and CH4selectivities of 26.5%and 3.9%,respectively. 展开更多
关键词 atomic layer deposition CO_(2)hydrogenation palladium based catalyst
下载PDF
Hydrogenation of CO_(2) to p-xylene over ZnZrO_(x)/hollow tubular HZSM-5 tandem catalyst
17
作者 Haifeng Tian Zhiyu Chen +3 位作者 Haowei Huang Fei Zha Yue Chang Hongshan Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期725-737,共13页
The conversion of CO_(2) into specific aromatics by modulating the morphology of zeolites is a promising strategy.HZSM-5 zeolite with hollow tubular morphology is reported.The morphology of zeolite was precisely contr... The conversion of CO_(2) into specific aromatics by modulating the morphology of zeolites is a promising strategy.HZSM-5 zeolite with hollow tubular morphology is reported.The morphology of zeolite was precisely controlled,and the acid sites on its outer surface were passivated by steam-assisted crystallization method,so that the zeolite exhibits higher aromatic selectivity than sheet HZSM-5 zeolite and greater p-xylene selectivity than chain HZSM-5 zeolite.The tandem catalyst was formed by combining hollow tubular HZSM-5 zeolites with ZnZrO_(x)metal oxides.The para-selectivity of p-xylene reached 76.2%at reaction temperature of 320℃,pressure of 3.0 MPa,and a flow rate of 2400 mL g^(-1)h^(-1)with an H_(2)/CO_(2) molar ratio of 3/1.Further research indicates that the high selectivity of p-xylene is due to the pore structure of hollow tubular HZSM-5 zeolite,which is conducive to the formation of p-xylene.Moreover,the passivation of the acid site located on the outer surface of zeolite effectively prevents the isomerization of p-xylene.The reaction mechanism of CO_(2) hydrogenation over the tandem catalyst was investigated using in-situ diffuse reflectance Fourier transform infrared spectroscopy and density functional theory.The results showed that the CO_(2) to p-xylene followed a methanol-mediated route over ZnZrO_(x)/hollow tubular HZSM-5 tandem catalysts.In addition,the catalyst showed no significant deactivation in the 100 h stability test.This present study provides an effective strategy for the design of catalysts aimed at selectively preparing aromatics through CO_(2)hydrogenation. 展开更多
关键词 Hollow tubular HZSM-5 zeolite Tandem catalyst CO_(2)hydrogenation P-XYLENE Reaction mechanism
下载PDF
Chalcogen heteroatoms doped nickel-nitrogen-carbon single-atom catalysts with asymmetric coordination for efficient electrochemical CO_(2) reduction
18
作者 Jialin Wang Kaini Zhang +5 位作者 Ta Thi Thuy Ng Yiqing Wang Yuchuan Shi Daixing Wei Chung-Li Dong Shaohua Shen 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第9期54-65,共12页
The electronic configuration of central metal atoms in single-atom catalysts(SACs)is pivotal in electrochemical CO_(2) reduction reaction(eCO_(2)RR).Herein,chalcogen heteroatoms(e.g.,S,Se,and Te)were incorporated into... The electronic configuration of central metal atoms in single-atom catalysts(SACs)is pivotal in electrochemical CO_(2) reduction reaction(eCO_(2)RR).Herein,chalcogen heteroatoms(e.g.,S,Se,and Te)were incorporated into the symmetric nickel-nitrogen-carbon(Ni-N_(4)-C)configuration to obtain Ni-X-N_(3)-C(X:S,Se,and Te)SACs with asymmetric coordination presented for central Ni atoms.Among these obtained Ni-X-N_(3)-C(X:S,Se,and Te)SACs,Ni-Se-N_(3)-C exhibited superior eCO_(2)RR activity,with CO selectivity reaching~98% at-0.70 V versus reversible hydrogen electrode(RHE).The Zn-CO_(2) battery integrated with Ni-Se-N_(3)-C as cathode and Zn foil as anode achieved a peak power density of 1.82 mW cm^(-2) and maintained remarkable rechargeable stability over 20 h.In-situ spectral investigations and theoretical calculations demonstrated that the chalcogen heteroatoms doped into the Ni-N_(4)-C configuration would break coordination symmetry and trigger charge redistribution,and then regulate the intermediate behaviors and thermodynamic reaction pathways for eCO_(2)RR.Especially,for Ni-Se-N_(3)-C,the introduced Se atoms could significantly raise the d-band center of central Ni atoms and thus remarkably lower the energy barrier for the rate-determining step of ^(*)COOH formation,contributing to the promising eCO_(2)RR performance for high selectivity CO production by competing with hydrogen evolution reaction. 展开更多
关键词 Electrochemical CO_(2) reduction reaction Chalcogen heteroatoms Single-atom catalysts Asymmetric coordination CO production
下载PDF
Accelerating the design of catalysts for CO_(2)electroreduction to HCOOH:A data-driven DFT-ML screening of dual atom catalysts
19
作者 Huiwen Zhu Zeyu Guo +6 位作者 Dawei Lan Shuai Liu Min Liu Jianwen Zhang Xiang Luo Jiahui Yu Tao Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期627-635,共9页
Dual-atom catalysts(DACs)have emerged as potential catalysts for effective electroreduction of CO_(2)due to their high atom utilization efficiency and multiple active sites.However,the screening of DACs remains a chal... Dual-atom catalysts(DACs)have emerged as potential catalysts for effective electroreduction of CO_(2)due to their high atom utilization efficiency and multiple active sites.However,the screening of DACs remains a challenge due to the large number of possible combinations,making exhaustive experimental or computational screening a daunting task.In this study,a density functional theory(DFT)-based machine learning(ML)-accelerated(DFT-ML)hybrid approach was developed to test a set of 406 dual transition metal catalysts on N-doped graphene(NG)for the electroreduction of CO_(2)to HCOOH.The results showed that the ML algorithms can successfully capture the relationship between the descriptors of the DACs(inputs)and the limiting potential for HCOOH generation(output).Of the four ML algorithms studied in this work,the feedforward neural network model achieved the highest prediction accuracy(the highest correlation coefficient(R^(2))of 0.960 and the lowest root mean square error(RMSE)of 0.319 eV on the test set)and the predicted results were verified by DFT calculations with an average absolute error of 0.14 eV.The DFT-ML approach identified Co-Co-NG and Ir-Fe-NG as the most active and stable electrocatalysts for the electrochemical reduction of CO_(2)to HCOOH.The DFT-ML hybrid approach exhibits exceptional prediction accuracy while enabling a significant reduction in screening time by an impressive 64%compared to conventional DFT-only calculations.These results demonstrate the immense potential of using ML methods to accelerate the screening and rational design of efficient catalysts for various energy and environmental applications. 展开更多
关键词 CO_(2)electroreduction reaction Dual atom catalysts Rapid screening Density functional theory Machine learning
下载PDF
Revealing the Promoting Eff ect of CeO_(2)on the Cu/ZnO Catalyst for Methanol Steam Reforming
20
作者 Mengyuan Zhu Didi Li +5 位作者 Zhaocong Jiang Shiqing Jin Qing Zhang Haoyuan Gu Yi-Fan Han Minghui Zhu 《Transactions of Tianjin University》 EI CAS 2024年第6期544-552,共9页
Cu-based catalysts have been extensively used in methanol steam reforming(MSR)reactions because of their low cost and high effi ciency.ZnO is often used in commercial Cu-based catalysts as both a structural and an ele... Cu-based catalysts have been extensively used in methanol steam reforming(MSR)reactions because of their low cost and high effi ciency.ZnO is often used in commercial Cu-based catalysts as both a structural and an electronic promoter to stabilize metal Cu nanoparticles and modify metal–support interfaces.Still,the further addition of chemical promoters is essential to further enhance the MSR reaction performance of the Cu/ZnO catalyst.In this work,CeO_(2)-doped Cu/ZnO catalysts were prepared using the coprecipitation method,and the eff ects of CeO_(2)on Cu-based catalysts were systematically investigated.Doping with appropriate CeO_(2)amounts could stabilize small Cu nanoparticles through a strong interaction between CeO_(2)and Cu,leading to the formation of more Cu+–ZnO x interfacial sites.However,higher CeO_(2)contents resulted in the formation of larger Cu nanoparticles and an excess of Cu+–CeO x interfacial sites.Consequently,the Cu/5CeO_(2)/ZnO catalyst with maximal Cu–ZnO interfaces exhibited the highest H 2 production rate of 94.6 mmolH2/(gcat·h),which was 1.5 and 10.2 times higher than those of Cu/ZnO and Cu/CeO_(2),respectively. 展开更多
关键词 Methanol steam reforming Cu/ZnO catalyst CeO_(2)promoter Metal–support interaction Interfacial site
下载PDF
上一页 1 2 158 下一页 到第
使用帮助 返回顶部