Online shopping in Cameroon is growing rapidly and gaining considerable ground.The phenomenon is relatively new as compared to the traditional brick-and-mortar store(serving customers face-to-face in a building rather...Online shopping in Cameroon is growing rapidly and gaining considerable ground.The phenomenon is relatively new as compared to the traditional brick-and-mortar store(serving customers face-to-face in a building rather than online).As the world faces digital transformations,businesses in Cameroon are seeking new ways to reach their customers and create favourable environments to effectively carryout online purchase.This study examines the factors that affect consumer online buying behaviour in Cameroon.Three theories guided this investigation:the Technology Acceptance Model(Davis,1989),Diffusion of Innovations Theory(Rogers,1995),and Uses and Gratifications Theory(Katz&Blumler,1974).The study focuses on students of the University of Buea who carry out online shopping.Purposive sampling is used,and data are collected from 365 respondents through a questionnaire with open and closed ended questions.Analysis of data is done with the use of the Statistical Package for Social Scientists(SPSS)Version 21 to determine the types of products consumers buy online;the degree to which consumer trust and satisfaction affect consumer loyalty;and the specific social,economic,and market factors that affect online buying behaviour.Findings indicate that:Consumers mostly buy fashion items(74.3%),electronics(44.7%),cosmetics(37.3%),and house equipment(34%)online.Consumers will repeat purchase from a marketer if they trust and are satisfied with the product and service quality(81.1%);hence,they will also encourage others to buy.If they are dissatisfied,they will not repeat purchase from the online store.Advertisement(76.1%),attractive pricing/discount(71.7%),product quality(71%),service quality(64.1%),convenience(72.3%),available income/money(49.6%),word of mouth recommendation(41.9%),and personal motivation(62.7%)constitute the major factors that affect consumer online buying behaviour.Results of the hypotheses testing show that:H1=Consumers buy more of fashion items online(X^(2)=9.950;df=16;p=0.869);H2=There is a significant relationship between trust and satisfaction and consumers online buying behaviour(X^(2)=270.765;df=16;p=0.000);and H3=Social,economic,and market factors significantly affect consumer online buying behaviour(X^(2)=106.328;df=16;p=0.000).The study recommends online marketers to develop their marketing strategies towards customer orientation and focus on the ease of use of their online shopping services.展开更多
The rise in online home delivery services(OHDS)has had a significant impact on how urban services are supplied and used in recent years.Studies on the spatial accessibility of OHDS are emerging,but few is known about ...The rise in online home delivery services(OHDS)has had a significant impact on how urban services are supplied and used in recent years.Studies on the spatial accessibility of OHDS are emerging,but few is known about the temporal dimension of OHDS accessibility as well as the geographic and socioeconomic differences in the spatiotemporal accessibility of OHDS.This study measures the spatiotemporal accessibility of four types of OHDS,namely leisure,fresh and convenient,medical,and catering services.The geographic and socioeconomic disparities in the spatiotemporal accessibility of these four types of OHDS are then identified using spatial statistical methods and the Kruskal-Wallis test(K-W test).The case study in Nanjing,China,suggests that:1)spatiotemporal accessibility better reflects the temporal variation of OHDS accessibility and avoids overestimation of OHDS accessibility when only considering its spatial dimension.2)The spatiotemporal accessibility of OHDS varies geographically and socioeconomically.Neighborhoods located in the main city or neighborhoods with higher housing prices,higher population density,and higher point of interest(POI)mix have better OHDS spatiotemporal accessibility.Our study contributes to the understanding of OHDS accessibility from a spatiotemporal perspective,and the empirical insights can assist policymakers in creating intervention plans that take into account variations in OHDS spatiotemporal accessibility.展开更多
With the rapid development of machine learning,the demand for high-efficient computing becomes more and more urgent.To break the bottleneck of the traditional Von Neumann architecture,computing-in-memory(CIM)has attra...With the rapid development of machine learning,the demand for high-efficient computing becomes more and more urgent.To break the bottleneck of the traditional Von Neumann architecture,computing-in-memory(CIM)has attracted increasing attention in recent years.In this work,to provide a feasible CIM solution for the large-scale neural networks(NN)requiring continuous weight updating in online training,a flash-based computing-in-memory with high endurance(10^(9) cycles)and ultrafast programming speed is investigated.On the one hand,the proposed programming scheme of channel hot electron injection(CHEI)and hot hole injection(HHI)demonstrate high linearity,symmetric potentiation,and a depression process,which help to improve the training speed and accuracy.On the other hand,the low-damage programming scheme and memory window(MW)optimizations can suppress cell degradation effectively with improved computing accuracy.Even after 109 cycles,the leakage current(I_(off))of cells remains sub-10pA,ensuring the large-scale computing ability of memory.Further characterizations are done on read disturb to demonstrate its robust reliabilities.By processing CIFAR-10 tasks,it is evident that~90%accuracy can be achieved after 109 cycles in both ResNet50 and VGG16 NN.Our results suggest that flash-based CIM has great potential to overcome the limitations of traditional Von Neumann architectures and enable high-performance NN online training,which pave the way for further development of artificial intelligence(AI)accelerators.展开更多
The residual subsidence caused by underground mining in mountain area has a long subsidence duration time and great potential harm,which seriously threatens the safety of people's production and life in the mining...The residual subsidence caused by underground mining in mountain area has a long subsidence duration time and great potential harm,which seriously threatens the safety of people's production and life in the mining area.Therefore,it is necessary to use appropriate monitoring methods and mathematical models to effectively monitor and predict the residual subsidence caused by underground mining.Compared with traditional level survey and InSAR(Interferometric Synthetic Aperture Radar)technology,GNSS(Global Navigation Satellite System)online monitoring technology has the advantages of long-term monitoring,high precision and more flexible monitoring methods.The empirical equation method of residual subsidence in mining subsidence is effectively combined with the rock creep equation,which can not only describe the residual subsidence process from the mechanism,but also predict the residual subsidence.Therefore,based on GNSS online monitoring technology,combined with the mining subsidence model of mountain area and adding the correlation coefficient of the compaction degree of caving broken rock and the Kelvin model of rock mechanics,this paper constructs the residual subsidence time series model of arbitrary point on the ground in mountain area.Through the example,the predicted results of the model in the inversion parameter phase and the dynamic prediction phase are compared with the measured data sequence.The results show that the model can carry out effective numerical calculation according to the GNSS monitoring data of any point on the ground,and the model prediction effect is good,which provides a new method for the prediction of residual subsidence in mountain mining.展开更多
The machine learning models of multiple linear regression(MLR),support vector regression(SVR),and extreme learning ma-chine(ELM)and the proposed ELM models of online sequential ELM(OS-ELM)and OS-ELM with forgetting me...The machine learning models of multiple linear regression(MLR),support vector regression(SVR),and extreme learning ma-chine(ELM)and the proposed ELM models of online sequential ELM(OS-ELM)and OS-ELM with forgetting mechanism(FOS-ELM)are applied in the prediction of the lime utilization ratio of dephosphorization in the basic oxygen furnace steelmaking process.The ELM model exhibites the best performance compared with the models of MLR and SVR.OS-ELM and FOS-ELM are applied for sequential learning and model updating.The optimal number of samples in validity term of the FOS-ELM model is determined to be 1500,with the smallest population mean absolute relative error(MARE)value of 0.058226 for the population.The variable importance analysis reveals lime weight,initial P content,and hot metal weight as the most important variables for the lime utilization ratio.The lime utilization ratio increases with the decrease in lime weight and the increases in the initial P content and hot metal weight.A prediction system based on FOS-ELM is applied in actual industrial production for one month.The hit ratios of the predicted lime utilization ratio in the error ranges of±1%,±3%,and±5%are 61.16%,90.63%,and 94.11%,respectively.The coefficient of determination,MARE,and root mean square error are 0.8670,0.06823,and 1.4265,respectively.The system exhibits desirable performance for applications in actual industrial pro-duction.展开更多
The user’s intent to seek online information has been an active area of research in user profiling.User profiling considers user characteristics,behaviors,activities,and preferences to sketch user intentions,interest...The user’s intent to seek online information has been an active area of research in user profiling.User profiling considers user characteristics,behaviors,activities,and preferences to sketch user intentions,interests,and motivations.Determining user characteristics can help capture implicit and explicit preferences and intentions for effective user-centric and customized content presentation.The user’s complete online experience in seeking information is a blend of activities such as searching,verifying,and sharing it on social platforms.However,a combination of multiple behaviors in profiling users has yet to be considered.This research takes a novel approach and explores user intent types based on multidimensional online behavior in information acquisition.This research explores information search,verification,and dissemination behavior and identifies diverse types of users based on their online engagement using machine learning.The research proposes a generic user profile template that explains the user characteristics based on the internet experience and uses it as ground truth for data annotation.User feedback is based on online behavior and practices collected by using a survey method.The participants include both males and females from different occupation sectors and different ages.The data collected is subject to feature engineering,and the significant features are presented to unsupervised machine learning methods to identify user intent classes or profiles and their characteristics.Different techniques are evaluated,and the K-Mean clustering method successfully generates five user groups observing different user characteristics with an average silhouette of 0.36 and a distortion score of 1136.Feature average is computed to identify user intent type characteristics.The user intent classes are then further generalized to create a user intent template with an Inter-Rater Reliability of 75%.This research successfully extracts different user types based on their preferences in online content,platforms,criteria,and frequency.The study also validates the proposed template on user feedback data through Inter-Rater Agreement process using an external human rater.展开更多
Early warning of thermal runaway(TR)of lithium-ion batteries(LIBs)is a significant challenge in current application scenarios.Timely and effective TR early warning technology is urgently required considering the curre...Early warning of thermal runaway(TR)of lithium-ion batteries(LIBs)is a significant challenge in current application scenarios.Timely and effective TR early warning technology is urgently required considering the current fire safety situation of LIBs.In this work,we report an early warning method of TR with online electrochemical impedance spectroscopy(EIS)monitoring,which overcomes the shortcomings of warning methods based on traditional signals such as temperature,gas,and pressure with obvious delay and high cost.With in-situ data acquisition through accelerating rate calorimeter(ARC)-EIS test,the crucial features of TR were extracted using the RReliefF algorithm.TR mechanisms corresponding to the features at specific frequencies were analyzed.Finally,a three-level warning strategy for single battery,series module,and parallel module was formulated,which can successfully send out an early warning signal ahead of the self-heating temperature of battery under thermal abuse condition.The technology can provide a reliable basis for the timely intervention of battery thermal management and fire protection systems and is expected to be applied to electric vehicles and energy storage devices to realize early warning and improve battery safety.展开更多
The virtuality and openness of online social platforms make networks a hotbed for the rapid propagation of various rumors.In order to block the outbreak of rumor,one of the most effective containment measures is sprea...The virtuality and openness of online social platforms make networks a hotbed for the rapid propagation of various rumors.In order to block the outbreak of rumor,one of the most effective containment measures is spreading positive information to counterbalance the diffusion of rumor.The spreading mechanism of rumors and effective suppression strategies are significant and challenging research issues.Firstly,in order to simulate the dissemination of multiple types of information,we propose a competitive linear threshold model with state transition(CLTST)to describe the spreading process of rumor and anti-rumor in the same network.Subsequently,we put forward a community-based rumor blocking(CRB)algorithm based on influence maximization theory in social networks.Its crucial step is to identify a set of influential seeds that propagate anti-rumor information to other nodes,which includes community detection,selection of candidate anti-rumor seeds and generation of anti-rumor seed set.Under the CLTST model,the CRB algorithm has been compared with six state-of-the-art algorithms on nine online social networks to verify the performance.Experimental results show that the proposed model can better reflect the process of rumor propagation,and review the propagation mechanism of rumor and anti-rumor in online social networks.Moreover,the proposed CRB algorithm has better performance in weakening the rumor dissemination ability,which can select anti-rumor seeds in networks more accurately and achieve better performance in influence spread,sensitivity analysis,seeds distribution and running time.展开更多
This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online ide...This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online identification method is a computer-involved approach for data collection,processing,and system identification,commonly used for adaptive control and prediction.This paper proposes a method for dynamically aggregating large-scale adjustable loads to support high proportions of new energy integration,aiming to study the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction methods.The experiment selected 300 central air conditioners as the research subject and analyzed their regulation characteristics,economic efficiency,and comfort.The experimental results show that as the adjustment time of the air conditioner increases from 5 minutes to 35 minutes,the stable adjustment quantity during the adjustment period decreases from 28.46 to 3.57,indicating that air conditioning loads can be controlled over a long period and have better adjustment effects in the short term.Overall,the experimental results of this paper demonstrate that analyzing the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction algorithms is effective.展开更多
For the n-qubit stochastic open quantum systems,based on the Lyapunov stability theorem and LaSalle’s invariant set principle,a pure state switching control based on on-line estimated state feedback(short for OQST-SF...For the n-qubit stochastic open quantum systems,based on the Lyapunov stability theorem and LaSalle’s invariant set principle,a pure state switching control based on on-line estimated state feedback(short for OQST-SFC)is proposed to realize the state transition the pure state of the target state including eigenstate and superposition state.The proposed switching control consists of a constant control and a control law designed based on the Lyapunov method,in which the Lyapunov function is the state distance of the system.The constant control is used to drive the system state from an initial state to the convergence domain only containing the target state,and a Lyapunov-based control is used to make the state enter the convergence domain and then continue to converge to the target state.At the same time,the continuous weak measurement of quantum system and the quantum state tomography method based on the on-line alternating direction multiplier(QST-OADM)are used to obtain the system information and estimate the quantum state which is used as the input of the quantum system controller.Then,the pure state feedback switching control method based on the on-line estimated state feedback is realized in an n-qubit stochastic open quantum system.The complete derivation process of n-qubit QST-OADM algorithm is given;Through strict theoretical proof and analysis,the convergence conditions to ensure any initial state of the quantum system to converge the target pure state are given.The proposed control method is applied to a 2-qubit stochastic open quantum system for numerical simulation experiments.Four possible different position cases between the initial estimated state and that of the controlled system are studied and discussed,and the performances of the state transition under the corresponding cases are analyzed.展开更多
Online Signature Verification (OSV), as a personal identification technology, is widely used in various industries.However, it faces challenges, such as incomplete feature extraction, low accuracy, and computational h...Online Signature Verification (OSV), as a personal identification technology, is widely used in various industries.However, it faces challenges, such as incomplete feature extraction, low accuracy, and computational heaviness. Toaddress these issues, we propose a novel approach for online signature verification, using a one-dimensionalGhost-ACmix Residual Network (1D-ACGRNet), which is a Ghost-ACmix Residual Network that combines convolutionwith a self-attention mechanism and performs improvement by using Ghost method. The Ghost-ACmix Residualstructure is introduced to leverage both self-attention and convolution mechanisms for capturing global featureinformation and extracting local information, effectively complementing whole and local signature features andmitigating the problem of insufficient feature extraction. Then, the Ghost-based Convolution and Self-Attention(ACG) block is proposed to simplify the common parts between convolution and self-attention using the Ghostmodule and employ feature transformation to obtain intermediate features, thus reducing computational costs.Additionally, feature selection is performed using the random forestmethod, and the data is dimensionally reducedusing Principal Component Analysis (PCA). Finally, tests are implemented on the MCYT-100 datasets and theSVC-2004 Task2 datasets, and the equal error rates (EERs) for small-sample training using five genuine andforged signatures are 3.07% and 4.17%, respectively. The EERs for training with ten genuine and forged signaturesare 0.91% and 2.12% on the respective datasets. The experimental results illustrate that the proposed approacheffectively enhances the accuracy of online signature verification.展开更多
In this paper,an efficient unequal error protection(UEP)scheme for online fountain codes is proposed.In the buildup phase,the traversing-selection strategy is proposed to select the most important symbols(MIS).Then,in...In this paper,an efficient unequal error protection(UEP)scheme for online fountain codes is proposed.In the buildup phase,the traversing-selection strategy is proposed to select the most important symbols(MIS).Then,in the completion phase,the weighted-selection strategy is applied to provide low overhead.The performance of the proposed scheme is analyzed and compared with the existing UEP online fountain scheme.Simulation results show that in terms of MIS and the least important symbols(LIS),when the bit error ratio is 10-4,the proposed scheme can achieve 85%and 31.58%overhead reduction,respectively.展开更多
With the rise and development of major types of platforms,the competition for resources has become extremely fierce,and the market share of C2C platforms has been seriously threatened by the loss of resources.Therefor...With the rise and development of major types of platforms,the competition for resources has become extremely fierce,and the market share of C2C platforms has been seriously threatened by the loss of resources.Therefore,building and maintaining buyers’satisfaction and loyalty to C2C platforms is critical to the survival and sustainability of C2C platforms in China.However,the current knowledge on how platform satisfaction and loyalty are constructed in the C2C e-commerce environment is incomplete.In this study,seller-based satisfaction and platform-based satisfaction are constructed separately.We further distinguish seller-based transaction satisfaction into economic and social satisfaction and explore their antecedents and consequences.To test our research hypotheses,we conduct a survey and collect data from a real online market(Taobao website).The results show that seller-based transaction satisfaction positively affects platform-based overall satisfaction and loyalty,and that perceived product quality,perceived assurance,and perceived price fairness all have a significant effect on economic satisfaction,whereas perceived relationship quality and perceived empathy significantly influence social satisfaction.These findings help us understand the literature related to customer satisfaction in the context of C2C in China and provide inspiration for online sellers and platforms.展开更多
Students'demand for online learning has exploded during the post-COvID-19 pandemic era.However,due to their poor learning experience,students'dropout rate and learning performance of online learning are not al...Students'demand for online learning has exploded during the post-COvID-19 pandemic era.However,due to their poor learning experience,students'dropout rate and learning performance of online learning are not always satisfactory.The technical advantages of Beyond Fifth Generation(B5G)can guarantee a good multimedia Quality of Experience(QoE).As a special case of multimedia services,online learning takes into account both the usability of the service and the cognitive development of the users.Factors that affect the Quality of Online Learning Experience(OL-QoE)become more complicated.To get over this dilemma,we propose a systematic scheme by integrating big data,Machine Learning(ML)technologies,and educational psychology theory.Specifically,we first formulate a general definition of OL-QoE by data analysis and experimental verification.This formula considers both the subjective and objective factors(i.e.,video watching ratio and test scores)that most affect OLQoE.Then,we induce an extended layer to the classic Broad Learning System(BLS)to construct an Extended Broad Learning System(EBLS)for the students'OL-QoE prediction.Since the extended layer can increase the width of the BLS model and reduce the redundant nodes of BLS,the proposed EBLS can achieve a trade-off between the prediction accuracy and computation complexity.Finally,we provide a series of early intervention suggestions for different types of students according to their predicted OL-QoE values.Through timely interventions,their OL-QoE and learning performance can be improved.Experimental results verify the effectiveness oftheproposed scheme.展开更多
Dear Editor,In this letter, we introduce a novel online distributed data-driven robust control approach for learning controllers of unknown nonlinear multi-agent systems(MASs) using state-dependent representations.
In electromagnetic countermeasures circumstances,synthetic aperture radar(SAR)imagery usually suffers from severe quality degradation from modulated interrupt sampling repeater jamming(MISRJ),which usually owes consid...In electromagnetic countermeasures circumstances,synthetic aperture radar(SAR)imagery usually suffers from severe quality degradation from modulated interrupt sampling repeater jamming(MISRJ),which usually owes considerable coherence with the SAR transmission waveform together with periodical modulation patterns.This paper develops an MISRJ suppression algorithm for SAR imagery with online dictionary learning.In the algorithm,the jamming modulation temporal properties are exploited with extracting and sorting MISRJ slices using fast-time autocorrelation.Online dictionary learning is followed to separate real signals from jamming slices.Under the learned representation,time-varying MISRJs are suppressed effectively.Both simulated and real-measured SAR data are also used to confirm advantages in suppressing time-varying MISRJs over traditional methods.展开更多
Missile interception problem can be regarded as a two-person zero-sum differential games problem,which depends on the solution of Hamilton-Jacobi-Isaacs(HJI)equa-tion.It has been proved impossible to obtain a closed-f...Missile interception problem can be regarded as a two-person zero-sum differential games problem,which depends on the solution of Hamilton-Jacobi-Isaacs(HJI)equa-tion.It has been proved impossible to obtain a closed-form solu-tion due to the nonlinearity of HJI equation,and many iterative algorithms are proposed to solve the HJI equation.Simultane-ous policy updating algorithm(SPUA)is an effective algorithm for solving HJI equation,but it is an on-policy integral reinforce-ment learning(IRL).For online implementation of SPUA,the dis-turbance signals need to be adjustable,which is unrealistic.In this paper,an off-policy IRL algorithm based on SPUA is pro-posed without making use of any knowledge of the systems dynamics.Then,a neural-network based online adaptive critic implementation scheme of the off-policy IRL algorithm is pre-sented.Based on the online off-policy IRL method,a computa-tional intelligence interception guidance(CIIG)law is developed for intercepting high-maneuvering target.As a model-free method,intercepting targets can be achieved through measur-ing system data online.The effectiveness of the CIIG is verified through two missile and target engagement scenarios.展开更多
Background:In recent years,online trolling has garnered significant attention due to its detrimental effects on mental health and social well-being.The current study examined the influence of peer victimization on ado...Background:In recent years,online trolling has garnered significant attention due to its detrimental effects on mental health and social well-being.The current study examined the influence of peer victimization on adolescent online trolling behavior,proposing that hostile attribution bias mediated this relationship and that trait mindfulness moderated both the direct and indirect effects.Methods:A total of 833 Chinese adolescents completed the measurements of peer victimization,hostile attribution bias,trait mindfulness,and online trolling.Moderated mediation analysis was performed to examine the relationships between these variables.Results:After controlling for gender and residential address,the study found a significant positive correlation between peer victimization and online trolling,with hostile attribution bias serving as a mediator.In addition,trait mindfulness moderated the direct relationship between peer victimization and online trolling.Specifically,the effect of peer victimization on online trolling was attenuated when adolescents had high levels of trait mindfulness.The results of the study emphasized the joint role of peer and personal factors in adolescents’online trolling behavior and provide certain strategies for intervening in adolescents’online trolling behavior.Conclusion:The results of the study suggest that strategies focusing on peer support and mindfulness training can have a positive impact on reducing online trolling behavior,promoting adolescents’mental health,and their long-term development.展开更多
Over the past few years,China’s higher education institutions have experienced remarkable growth in online teaching.However,it remains uncertain whether and how the sense of presence perceived by students affects the...Over the past few years,China’s higher education institutions have experienced remarkable growth in online teaching.However,it remains uncertain whether and how the sense of presence perceived by students affects their online learning outcomes when teachers use online teaching media for communication.This sense specifically pertains to the extent to which students perceive themselves as“real persons”and establish connections with others.Therefore,this study constructs a conceptual model elucidating the impact of presence on students’online learning outcomes and empirically examines the mechanism through which three types of presence influence students’online learning.The test results of the structural equation modeling(SEM)indicate that:(a)teaching presence,social presence,and cognitive presence all exhibit significantly positive outcomes on students’online learning outcomes;(b)these three types of presence can also indirectly and positively influence students’online learning outcomes through the mediating effect of flow experience and learning satisfaction;and(c)flow experience and learning satisfaction play a sequential mediating role in the process by which presence impacts students’online learning outcomes.We hope that the relevant research findings may contribute to unveiling the“black box”of the impact of presence on students’online learning outcomes and offer valuable insights for college educators to overcome online teaching constraints and enhance online teaching quality.展开更多
文摘Online shopping in Cameroon is growing rapidly and gaining considerable ground.The phenomenon is relatively new as compared to the traditional brick-and-mortar store(serving customers face-to-face in a building rather than online).As the world faces digital transformations,businesses in Cameroon are seeking new ways to reach their customers and create favourable environments to effectively carryout online purchase.This study examines the factors that affect consumer online buying behaviour in Cameroon.Three theories guided this investigation:the Technology Acceptance Model(Davis,1989),Diffusion of Innovations Theory(Rogers,1995),and Uses and Gratifications Theory(Katz&Blumler,1974).The study focuses on students of the University of Buea who carry out online shopping.Purposive sampling is used,and data are collected from 365 respondents through a questionnaire with open and closed ended questions.Analysis of data is done with the use of the Statistical Package for Social Scientists(SPSS)Version 21 to determine the types of products consumers buy online;the degree to which consumer trust and satisfaction affect consumer loyalty;and the specific social,economic,and market factors that affect online buying behaviour.Findings indicate that:Consumers mostly buy fashion items(74.3%),electronics(44.7%),cosmetics(37.3%),and house equipment(34%)online.Consumers will repeat purchase from a marketer if they trust and are satisfied with the product and service quality(81.1%);hence,they will also encourage others to buy.If they are dissatisfied,they will not repeat purchase from the online store.Advertisement(76.1%),attractive pricing/discount(71.7%),product quality(71%),service quality(64.1%),convenience(72.3%),available income/money(49.6%),word of mouth recommendation(41.9%),and personal motivation(62.7%)constitute the major factors that affect consumer online buying behaviour.Results of the hypotheses testing show that:H1=Consumers buy more of fashion items online(X^(2)=9.950;df=16;p=0.869);H2=There is a significant relationship between trust and satisfaction and consumers online buying behaviour(X^(2)=270.765;df=16;p=0.000);and H3=Social,economic,and market factors significantly affect consumer online buying behaviour(X^(2)=106.328;df=16;p=0.000).The study recommends online marketers to develop their marketing strategies towards customer orientation and focus on the ease of use of their online shopping services.
基金Under the auspices of National Natural Science Foundation of China (No.42330510)。
文摘The rise in online home delivery services(OHDS)has had a significant impact on how urban services are supplied and used in recent years.Studies on the spatial accessibility of OHDS are emerging,but few is known about the temporal dimension of OHDS accessibility as well as the geographic and socioeconomic differences in the spatiotemporal accessibility of OHDS.This study measures the spatiotemporal accessibility of four types of OHDS,namely leisure,fresh and convenient,medical,and catering services.The geographic and socioeconomic disparities in the spatiotemporal accessibility of these four types of OHDS are then identified using spatial statistical methods and the Kruskal-Wallis test(K-W test).The case study in Nanjing,China,suggests that:1)spatiotemporal accessibility better reflects the temporal variation of OHDS accessibility and avoids overestimation of OHDS accessibility when only considering its spatial dimension.2)The spatiotemporal accessibility of OHDS varies geographically and socioeconomically.Neighborhoods located in the main city or neighborhoods with higher housing prices,higher population density,and higher point of interest(POI)mix have better OHDS spatiotemporal accessibility.Our study contributes to the understanding of OHDS accessibility from a spatiotemporal perspective,and the empirical insights can assist policymakers in creating intervention plans that take into account variations in OHDS spatiotemporal accessibility.
基金This work was supported by the National Natural Science Foundation of China(Nos.62034006,92264201,and 91964105)the Natural Science Foundation of Shandong Province(Nos.ZR2020JQ28 and ZR2020KF016)the Program of Qilu Young Scholars of Shandong University.
文摘With the rapid development of machine learning,the demand for high-efficient computing becomes more and more urgent.To break the bottleneck of the traditional Von Neumann architecture,computing-in-memory(CIM)has attracted increasing attention in recent years.In this work,to provide a feasible CIM solution for the large-scale neural networks(NN)requiring continuous weight updating in online training,a flash-based computing-in-memory with high endurance(10^(9) cycles)and ultrafast programming speed is investigated.On the one hand,the proposed programming scheme of channel hot electron injection(CHEI)and hot hole injection(HHI)demonstrate high linearity,symmetric potentiation,and a depression process,which help to improve the training speed and accuracy.On the other hand,the low-damage programming scheme and memory window(MW)optimizations can suppress cell degradation effectively with improved computing accuracy.Even after 109 cycles,the leakage current(I_(off))of cells remains sub-10pA,ensuring the large-scale computing ability of memory.Further characterizations are done on read disturb to demonstrate its robust reliabilities.By processing CIFAR-10 tasks,it is evident that~90%accuracy can be achieved after 109 cycles in both ResNet50 and VGG16 NN.Our results suggest that flash-based CIM has great potential to overcome the limitations of traditional Von Neumann architectures and enable high-performance NN online training,which pave the way for further development of artificial intelligence(AI)accelerators.
基金supported by the Natural Science Foundation of Shanxi Province,China(202203021211153)National Natural Science Foundation of China(51704205).
文摘The residual subsidence caused by underground mining in mountain area has a long subsidence duration time and great potential harm,which seriously threatens the safety of people's production and life in the mining area.Therefore,it is necessary to use appropriate monitoring methods and mathematical models to effectively monitor and predict the residual subsidence caused by underground mining.Compared with traditional level survey and InSAR(Interferometric Synthetic Aperture Radar)technology,GNSS(Global Navigation Satellite System)online monitoring technology has the advantages of long-term monitoring,high precision and more flexible monitoring methods.The empirical equation method of residual subsidence in mining subsidence is effectively combined with the rock creep equation,which can not only describe the residual subsidence process from the mechanism,but also predict the residual subsidence.Therefore,based on GNSS online monitoring technology,combined with the mining subsidence model of mountain area and adding the correlation coefficient of the compaction degree of caving broken rock and the Kelvin model of rock mechanics,this paper constructs the residual subsidence time series model of arbitrary point on the ground in mountain area.Through the example,the predicted results of the model in the inversion parameter phase and the dynamic prediction phase are compared with the measured data sequence.The results show that the model can carry out effective numerical calculation according to the GNSS monitoring data of any point on the ground,and the model prediction effect is good,which provides a new method for the prediction of residual subsidence in mountain mining.
基金supported by the National Natural Science Foundation of China (No.U1960202).
文摘The machine learning models of multiple linear regression(MLR),support vector regression(SVR),and extreme learning ma-chine(ELM)and the proposed ELM models of online sequential ELM(OS-ELM)and OS-ELM with forgetting mechanism(FOS-ELM)are applied in the prediction of the lime utilization ratio of dephosphorization in the basic oxygen furnace steelmaking process.The ELM model exhibites the best performance compared with the models of MLR and SVR.OS-ELM and FOS-ELM are applied for sequential learning and model updating.The optimal number of samples in validity term of the FOS-ELM model is determined to be 1500,with the smallest population mean absolute relative error(MARE)value of 0.058226 for the population.The variable importance analysis reveals lime weight,initial P content,and hot metal weight as the most important variables for the lime utilization ratio.The lime utilization ratio increases with the decrease in lime weight and the increases in the initial P content and hot metal weight.A prediction system based on FOS-ELM is applied in actual industrial production for one month.The hit ratios of the predicted lime utilization ratio in the error ranges of±1%,±3%,and±5%are 61.16%,90.63%,and 94.11%,respectively.The coefficient of determination,MARE,and root mean square error are 0.8670,0.06823,and 1.4265,respectively.The system exhibits desirable performance for applications in actual industrial pro-duction.
文摘The user’s intent to seek online information has been an active area of research in user profiling.User profiling considers user characteristics,behaviors,activities,and preferences to sketch user intentions,interests,and motivations.Determining user characteristics can help capture implicit and explicit preferences and intentions for effective user-centric and customized content presentation.The user’s complete online experience in seeking information is a blend of activities such as searching,verifying,and sharing it on social platforms.However,a combination of multiple behaviors in profiling users has yet to be considered.This research takes a novel approach and explores user intent types based on multidimensional online behavior in information acquisition.This research explores information search,verification,and dissemination behavior and identifies diverse types of users based on their online engagement using machine learning.The research proposes a generic user profile template that explains the user characteristics based on the internet experience and uses it as ground truth for data annotation.User feedback is based on online behavior and practices collected by using a survey method.The participants include both males and females from different occupation sectors and different ages.The data collected is subject to feature engineering,and the significant features are presented to unsupervised machine learning methods to identify user intent classes or profiles and their characteristics.Different techniques are evaluated,and the K-Mean clustering method successfully generates five user groups observing different user characteristics with an average silhouette of 0.36 and a distortion score of 1136.Feature average is computed to identify user intent type characteristics.The user intent classes are then further generalized to create a user intent template with an Inter-Rater Reliability of 75%.This research successfully extracts different user types based on their preferences in online content,platforms,criteria,and frequency.The study also validates the proposed template on user feedback data through Inter-Rater Agreement process using an external human rater.
基金supported by the National Natural Science Foundation of China(U2033204,51976209)the Natural Science Foundation of Hefei(2022019)supported by Youth Innovative Promotion Association CAS(Y201768)。
文摘Early warning of thermal runaway(TR)of lithium-ion batteries(LIBs)is a significant challenge in current application scenarios.Timely and effective TR early warning technology is urgently required considering the current fire safety situation of LIBs.In this work,we report an early warning method of TR with online electrochemical impedance spectroscopy(EIS)monitoring,which overcomes the shortcomings of warning methods based on traditional signals such as temperature,gas,and pressure with obvious delay and high cost.With in-situ data acquisition through accelerating rate calorimeter(ARC)-EIS test,the crucial features of TR were extracted using the RReliefF algorithm.TR mechanisms corresponding to the features at specific frequencies were analyzed.Finally,a three-level warning strategy for single battery,series module,and parallel module was formulated,which can successfully send out an early warning signal ahead of the self-heating temperature of battery under thermal abuse condition.The technology can provide a reliable basis for the timely intervention of battery thermal management and fire protection systems and is expected to be applied to electric vehicles and energy storage devices to realize early warning and improve battery safety.
基金supported by the National Social Science Fund of China (Grant No.23BGL270)。
文摘The virtuality and openness of online social platforms make networks a hotbed for the rapid propagation of various rumors.In order to block the outbreak of rumor,one of the most effective containment measures is spreading positive information to counterbalance the diffusion of rumor.The spreading mechanism of rumors and effective suppression strategies are significant and challenging research issues.Firstly,in order to simulate the dissemination of multiple types of information,we propose a competitive linear threshold model with state transition(CLTST)to describe the spreading process of rumor and anti-rumor in the same network.Subsequently,we put forward a community-based rumor blocking(CRB)algorithm based on influence maximization theory in social networks.Its crucial step is to identify a set of influential seeds that propagate anti-rumor information to other nodes,which includes community detection,selection of candidate anti-rumor seeds and generation of anti-rumor seed set.Under the CLTST model,the CRB algorithm has been compared with six state-of-the-art algorithms on nine online social networks to verify the performance.Experimental results show that the proposed model can better reflect the process of rumor propagation,and review the propagation mechanism of rumor and anti-rumor in online social networks.Moreover,the proposed CRB algorithm has better performance in weakening the rumor dissemination ability,which can select anti-rumor seeds in networks more accurately and achieve better performance in influence spread,sensitivity analysis,seeds distribution and running time.
基金supported by the State Grid Science&Technology Project(5100-202114296A-0-0-00).
文摘This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online identification method is a computer-involved approach for data collection,processing,and system identification,commonly used for adaptive control and prediction.This paper proposes a method for dynamically aggregating large-scale adjustable loads to support high proportions of new energy integration,aiming to study the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction methods.The experiment selected 300 central air conditioners as the research subject and analyzed their regulation characteristics,economic efficiency,and comfort.The experimental results show that as the adjustment time of the air conditioner increases from 5 minutes to 35 minutes,the stable adjustment quantity during the adjustment period decreases from 28.46 to 3.57,indicating that air conditioning loads can be controlled over a long period and have better adjustment effects in the short term.Overall,the experimental results of this paper demonstrate that analyzing the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction algorithms is effective.
基金supported by the National Natural Science Foundation of China(62473354).
文摘For the n-qubit stochastic open quantum systems,based on the Lyapunov stability theorem and LaSalle’s invariant set principle,a pure state switching control based on on-line estimated state feedback(short for OQST-SFC)is proposed to realize the state transition the pure state of the target state including eigenstate and superposition state.The proposed switching control consists of a constant control and a control law designed based on the Lyapunov method,in which the Lyapunov function is the state distance of the system.The constant control is used to drive the system state from an initial state to the convergence domain only containing the target state,and a Lyapunov-based control is used to make the state enter the convergence domain and then continue to converge to the target state.At the same time,the continuous weak measurement of quantum system and the quantum state tomography method based on the on-line alternating direction multiplier(QST-OADM)are used to obtain the system information and estimate the quantum state which is used as the input of the quantum system controller.Then,the pure state feedback switching control method based on the on-line estimated state feedback is realized in an n-qubit stochastic open quantum system.The complete derivation process of n-qubit QST-OADM algorithm is given;Through strict theoretical proof and analysis,the convergence conditions to ensure any initial state of the quantum system to converge the target pure state are given.The proposed control method is applied to a 2-qubit stochastic open quantum system for numerical simulation experiments.Four possible different position cases between the initial estimated state and that of the controlled system are studied and discussed,and the performances of the state transition under the corresponding cases are analyzed.
基金National Natural Science Foundation of China(Grant No.62073227)Liaoning Provincial Science and Technology Department Foundation(Grant No.2023JH2/101300212).
文摘Online Signature Verification (OSV), as a personal identification technology, is widely used in various industries.However, it faces challenges, such as incomplete feature extraction, low accuracy, and computational heaviness. Toaddress these issues, we propose a novel approach for online signature verification, using a one-dimensionalGhost-ACmix Residual Network (1D-ACGRNet), which is a Ghost-ACmix Residual Network that combines convolutionwith a self-attention mechanism and performs improvement by using Ghost method. The Ghost-ACmix Residualstructure is introduced to leverage both self-attention and convolution mechanisms for capturing global featureinformation and extracting local information, effectively complementing whole and local signature features andmitigating the problem of insufficient feature extraction. Then, the Ghost-based Convolution and Self-Attention(ACG) block is proposed to simplify the common parts between convolution and self-attention using the Ghostmodule and employ feature transformation to obtain intermediate features, thus reducing computational costs.Additionally, feature selection is performed using the random forestmethod, and the data is dimensionally reducedusing Principal Component Analysis (PCA). Finally, tests are implemented on the MCYT-100 datasets and theSVC-2004 Task2 datasets, and the equal error rates (EERs) for small-sample training using five genuine andforged signatures are 3.07% and 4.17%, respectively. The EERs for training with ten genuine and forged signaturesare 0.91% and 2.12% on the respective datasets. The experimental results illustrate that the proposed approacheffectively enhances the accuracy of online signature verification.
基金supported by the National Natural Science Foundation of China(61601147)the Beijing Natural Science Foundation(L182032)。
文摘In this paper,an efficient unequal error protection(UEP)scheme for online fountain codes is proposed.In the buildup phase,the traversing-selection strategy is proposed to select the most important symbols(MIS).Then,in the completion phase,the weighted-selection strategy is applied to provide low overhead.The performance of the proposed scheme is analyzed and compared with the existing UEP online fountain scheme.Simulation results show that in terms of MIS and the least important symbols(LIS),when the bit error ratio is 10-4,the proposed scheme can achieve 85%and 31.58%overhead reduction,respectively.
基金supported by the National Key R&D Program of China(2018YFB1601401).
文摘With the rise and development of major types of platforms,the competition for resources has become extremely fierce,and the market share of C2C platforms has been seriously threatened by the loss of resources.Therefore,building and maintaining buyers’satisfaction and loyalty to C2C platforms is critical to the survival and sustainability of C2C platforms in China.However,the current knowledge on how platform satisfaction and loyalty are constructed in the C2C e-commerce environment is incomplete.In this study,seller-based satisfaction and platform-based satisfaction are constructed separately.We further distinguish seller-based transaction satisfaction into economic and social satisfaction and explore their antecedents and consequences.To test our research hypotheses,we conduct a survey and collect data from a real online market(Taobao website).The results show that seller-based transaction satisfaction positively affects platform-based overall satisfaction and loyalty,and that perceived product quality,perceived assurance,and perceived price fairness all have a significant effect on economic satisfaction,whereas perceived relationship quality and perceived empathy significantly influence social satisfaction.These findings help us understand the literature related to customer satisfaction in the context of C2C in China and provide inspiration for online sellers and platforms.
基金supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX20_0733)Education Reform Foundation of Jiangsu Province(Grant No.2021JSJG364)+1 种基金Key Education Reform Foundation of NJUPT(Grant No.JG00220JX02,JG00218JX03,JG00215JX01,JG00214JX52)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Students'demand for online learning has exploded during the post-COvID-19 pandemic era.However,due to their poor learning experience,students'dropout rate and learning performance of online learning are not always satisfactory.The technical advantages of Beyond Fifth Generation(B5G)can guarantee a good multimedia Quality of Experience(QoE).As a special case of multimedia services,online learning takes into account both the usability of the service and the cognitive development of the users.Factors that affect the Quality of Online Learning Experience(OL-QoE)become more complicated.To get over this dilemma,we propose a systematic scheme by integrating big data,Machine Learning(ML)technologies,and educational psychology theory.Specifically,we first formulate a general definition of OL-QoE by data analysis and experimental verification.This formula considers both the subjective and objective factors(i.e.,video watching ratio and test scores)that most affect OLQoE.Then,we induce an extended layer to the classic Broad Learning System(BLS)to construct an Extended Broad Learning System(EBLS)for the students'OL-QoE prediction.Since the extended layer can increase the width of the BLS model and reduce the redundant nodes of BLS,the proposed EBLS can achieve a trade-off between the prediction accuracy and computation complexity.Finally,we provide a series of early intervention suggestions for different types of students according to their predicted OL-QoE values.Through timely interventions,their OL-QoE and learning performance can be improved.Experimental results verify the effectiveness oftheproposed scheme.
基金partially supported by the National Key R&D Program of China (2022ZD0119302)the National Natural Science Foundation of China (U23B2059, 61925303, 62173034, 62088101)。
文摘Dear Editor,In this letter, we introduce a novel online distributed data-driven robust control approach for learning controllers of unknown nonlinear multi-agent systems(MASs) using state-dependent representations.
基金supported by the National Natural Science Foundation of China(61771372,61771367,62101494)the National Outstanding Youth Science Fund Project(61525105)+1 种基金Shenzhen Science and Technology Program(KQTD20190929172704911)the Aeronautic al Science Foundation of China(2019200M1001)。
文摘In electromagnetic countermeasures circumstances,synthetic aperture radar(SAR)imagery usually suffers from severe quality degradation from modulated interrupt sampling repeater jamming(MISRJ),which usually owes considerable coherence with the SAR transmission waveform together with periodical modulation patterns.This paper develops an MISRJ suppression algorithm for SAR imagery with online dictionary learning.In the algorithm,the jamming modulation temporal properties are exploited with extracting and sorting MISRJ slices using fast-time autocorrelation.Online dictionary learning is followed to separate real signals from jamming slices.Under the learned representation,time-varying MISRJs are suppressed effectively.Both simulated and real-measured SAR data are also used to confirm advantages in suppressing time-varying MISRJs over traditional methods.
文摘Missile interception problem can be regarded as a two-person zero-sum differential games problem,which depends on the solution of Hamilton-Jacobi-Isaacs(HJI)equa-tion.It has been proved impossible to obtain a closed-form solu-tion due to the nonlinearity of HJI equation,and many iterative algorithms are proposed to solve the HJI equation.Simultane-ous policy updating algorithm(SPUA)is an effective algorithm for solving HJI equation,but it is an on-policy integral reinforce-ment learning(IRL).For online implementation of SPUA,the dis-turbance signals need to be adjustable,which is unrealistic.In this paper,an off-policy IRL algorithm based on SPUA is pro-posed without making use of any knowledge of the systems dynamics.Then,a neural-network based online adaptive critic implementation scheme of the off-policy IRL algorithm is pre-sented.Based on the online off-policy IRL method,a computa-tional intelligence interception guidance(CIIG)law is developed for intercepting high-maneuvering target.As a model-free method,intercepting targets can be achieved through measur-ing system data online.The effectiveness of the CIIG is verified through two missile and target engagement scenarios.
基金supported by the Sichuan Provincial Philosophy and Social Science Foundation Project(General Project)titled‘Research on the Influence Mechanism and Intervention of Mindfulness on Online Trolling among Adolescents’(Grant Number:SCJJ23ND227).
文摘Background:In recent years,online trolling has garnered significant attention due to its detrimental effects on mental health and social well-being.The current study examined the influence of peer victimization on adolescent online trolling behavior,proposing that hostile attribution bias mediated this relationship and that trait mindfulness moderated both the direct and indirect effects.Methods:A total of 833 Chinese adolescents completed the measurements of peer victimization,hostile attribution bias,trait mindfulness,and online trolling.Moderated mediation analysis was performed to examine the relationships between these variables.Results:After controlling for gender and residential address,the study found a significant positive correlation between peer victimization and online trolling,with hostile attribution bias serving as a mediator.In addition,trait mindfulness moderated the direct relationship between peer victimization and online trolling.Specifically,the effect of peer victimization on online trolling was attenuated when adolescents had high levels of trait mindfulness.The results of the study emphasized the joint role of peer and personal factors in adolescents’online trolling behavior and provide certain strategies for intervening in adolescents’online trolling behavior.Conclusion:The results of the study suggest that strategies focusing on peer support and mindfulness training can have a positive impact on reducing online trolling behavior,promoting adolescents’mental health,and their long-term development.
基金the project“Research on the Evaluation Mechanism of College Ideological and Political Education:A Perspective on Teacher-Student Development,”funded by Zhejiang Provincial College Ideological and Political Education Research Project.
文摘Over the past few years,China’s higher education institutions have experienced remarkable growth in online teaching.However,it remains uncertain whether and how the sense of presence perceived by students affects their online learning outcomes when teachers use online teaching media for communication.This sense specifically pertains to the extent to which students perceive themselves as“real persons”and establish connections with others.Therefore,this study constructs a conceptual model elucidating the impact of presence on students’online learning outcomes and empirically examines the mechanism through which three types of presence influence students’online learning.The test results of the structural equation modeling(SEM)indicate that:(a)teaching presence,social presence,and cognitive presence all exhibit significantly positive outcomes on students’online learning outcomes;(b)these three types of presence can also indirectly and positively influence students’online learning outcomes through the mediating effect of flow experience and learning satisfaction;and(c)flow experience and learning satisfaction play a sequential mediating role in the process by which presence impacts students’online learning outcomes.We hope that the relevant research findings may contribute to unveiling the“black box”of the impact of presence on students’online learning outcomes and offer valuable insights for college educators to overcome online teaching constraints and enhance online teaching quality.