A micro structure porous cored octagonal photonic crystal fiber (P-OPCF) has been proposed to sense aqueous analysts (alcohol series) over a wavelength range of 0.80 μm to 2.0 μm. By implementing a full vectoria...A micro structure porous cored octagonal photonic crystal fiber (P-OPCF) has been proposed to sense aqueous analysts (alcohol series) over a wavelength range of 0.80 μm to 2.0 μm. By implementing a full vectorial finite element method (FEM), the numerical simulation on the proposed O-PCF has been analyzed. Numerical investigation shows that high sensitivity can be gained by changing the structural parameters. The obtained result shows the sensitivities of 66.78%, 67.66%, 68.34%, 68.72%, and 69.09%, and the confinement losses of 2.42×10^-10 dB/m, 3.28x×10^-11 dB/m, 1.21 ×10^-6 dB/m, 4.79×10^-10 dB/m, and 4.99×10^-9 dB/m at the 1.33 ktm wavelength for methanol, ethanol, propanol, butanol, and pentanol, respectively can satisfy the condition of much legibility to install an optical system. The effects of the varying core and cladding diameters, pitch distance, operating wavelength, and effective refractive index are also reported here. It reflects that a significant sensitivity and low confinement loss can be achieved by the proposed P-OPCE The proposed P-OPCF also covers the wavelength band (O+E+S+C+L+U). The investigation also exhibits that the sensitivity increases when the wavelength increases like SO-band〈SE-band 〈SS-band 〈 SC-band 〈SL-band 〈SU-band. This research observation has much pellucidity which has remarkable impact on the field of optical fiber sensor.展开更多
文摘A micro structure porous cored octagonal photonic crystal fiber (P-OPCF) has been proposed to sense aqueous analysts (alcohol series) over a wavelength range of 0.80 μm to 2.0 μm. By implementing a full vectorial finite element method (FEM), the numerical simulation on the proposed O-PCF has been analyzed. Numerical investigation shows that high sensitivity can be gained by changing the structural parameters. The obtained result shows the sensitivities of 66.78%, 67.66%, 68.34%, 68.72%, and 69.09%, and the confinement losses of 2.42×10^-10 dB/m, 3.28x×10^-11 dB/m, 1.21 ×10^-6 dB/m, 4.79×10^-10 dB/m, and 4.99×10^-9 dB/m at the 1.33 ktm wavelength for methanol, ethanol, propanol, butanol, and pentanol, respectively can satisfy the condition of much legibility to install an optical system. The effects of the varying core and cladding diameters, pitch distance, operating wavelength, and effective refractive index are also reported here. It reflects that a significant sensitivity and low confinement loss can be achieved by the proposed P-OPCE The proposed P-OPCF also covers the wavelength band (O+E+S+C+L+U). The investigation also exhibits that the sensitivity increases when the wavelength increases like SO-band〈SE-band 〈SS-band 〈 SC-band 〈SL-band 〈SU-band. This research observation has much pellucidity which has remarkable impact on the field of optical fiber sensor.