Based on the open-plus-closed-loop (OPCL) control method a systematic and comprehensive controller is presented in this paper for a chaotic system, that is, the Newton-Leipnik equation with two strange attractors: ...Based on the open-plus-closed-loop (OPCL) control method a systematic and comprehensive controller is presented in this paper for a chaotic system, that is, the Newton-Leipnik equation with two strange attractors: the upper attractor (UA) and the lower attractor (LA). Results show that the final structure of the suggested controller for stabilization has a simple linear feedback form. To keep the integrity of the suggested approach, the globality proof of the basins of entrainment is also provided. In virtue of the OPCL technique, three different kinds of chaotic controls of the system are investigated, separately: the original control forcing the chaotic motion to settle down to the origin from an arbitrary position of the phase space; the chaotic intra-attractor control for stabilizing the equilibrium points only belonging to the upper chaotic attractor or the lower chaotic one; and the inter-attractor control for compelling the chaotic oscillation from one basin to another one. Both theoretical analysis and simulation results verify the validity of the proposed means.展开更多
By using the idea of open-plus-closed-loop(OPCL) control, a controller composed of an external excitation and a linear feedback is designed to entrain chaotic trajectories of Mathieu-Duffing oscillator to its period...By using the idea of open-plus-closed-loop(OPCL) control, a controller composed of an external excitation and a linear feedback is designed to entrain chaotic trajectories of Mathieu-Duffing oscillator to its periodic and higher periodic orbits. The global basin of entrainment of this open-plus-closed-loop control is proved by combining the Lyapunov stability theory with a comparative theorem of initial value problems for second-order ordinary differential equations. Numerical simulations are performed to verify the theoretical results.展开更多
An open-plus-closed-loop (OPCL) control problem for the chaotic motion of a 3D rigid pendulum subjected to a constant gravitationM force is studied. The 3D rigid pendulum is assumed to be consist of a rigid body sup...An open-plus-closed-loop (OPCL) control problem for the chaotic motion of a 3D rigid pendulum subjected to a constant gravitationM force is studied. The 3D rigid pendulum is assumed to be consist of a rigid body supported by a fixed and frictionless pivot with three rotational degrees. In order to avoid the singular phenomenon of Euler's angular velocity equation, the quaternion kinematic equation is used to describe the motion of the 3D rigid pendulum. An OPCL controller for chaotic motion of a 3D rigid pendulum at equilibrium position is designed. This OPCL controller contains two parts: the open-loop part to construct an ideal trajectory and the closed-loop part to stabilize the 3D rigid pendulum. Simulation results show that the controller is effective and efficient.展开更多
An improved OPCL method is developed and applied to both small swing and giant rotation synchronization of a two-link mechanism. Transition processes of the two kinds of synchronization are discussed. Comparisons of d...An improved OPCL method is developed and applied to both small swing and giant rotation synchronization of a two-link mechanism. Transition processes of the two kinds of synchronization are discussed. Comparisons of different motion characteristics of the two-link synchronization and the effects of different control parameters on synchronous processes are investigated with numerical simulations.展开更多
基于开闭环控制的思想,设计了一类由外激力与线性误差反馈组成的开闭环控制器,研究了Mathieu-Duffing振子混沌轨道至任意目标周期轨道的控制问题;同时,利用Liapunov稳定性理论与二阶常微分方程初值问题的一个比较定理,证明了上述开闭环...基于开闭环控制的思想,设计了一类由外激力与线性误差反馈组成的开闭环控制器,研究了Mathieu-Duffing振子混沌轨道至任意目标周期轨道的控制问题;同时,利用Liapunov稳定性理论与二阶常微分方程初值问题的一个比较定理,证明了上述开闭环控制夹带盆(basin of entrainment)的全局性.最后,利用数值模拟,验证了理论结果的正确性.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 60374013), the Doctorate Foundation of Henan Polytechnic University, China (Grant No 648606). Acknowledgments The author is greatly indebted to the authors of the references for their original valuable work.
文摘Based on the open-plus-closed-loop (OPCL) control method a systematic and comprehensive controller is presented in this paper for a chaotic system, that is, the Newton-Leipnik equation with two strange attractors: the upper attractor (UA) and the lower attractor (LA). Results show that the final structure of the suggested controller for stabilization has a simple linear feedback form. To keep the integrity of the suggested approach, the globality proof of the basins of entrainment is also provided. In virtue of the OPCL technique, three different kinds of chaotic controls of the system are investigated, separately: the original control forcing the chaotic motion to settle down to the origin from an arbitrary position of the phase space; the chaotic intra-attractor control for stabilizing the equilibrium points only belonging to the upper chaotic attractor or the lower chaotic one; and the inter-attractor control for compelling the chaotic oscillation from one basin to another one. Both theoretical analysis and simulation results verify the validity of the proposed means.
基金Project supported by the National Natural Science Foundation of China (No. 10672193)
文摘By using the idea of open-plus-closed-loop(OPCL) control, a controller composed of an external excitation and a linear feedback is designed to entrain chaotic trajectories of Mathieu-Duffing oscillator to its periodic and higher periodic orbits. The global basin of entrainment of this open-plus-closed-loop control is proved by combining the Lyapunov stability theory with a comparative theorem of initial value problems for second-order ordinary differential equations. Numerical simulations are performed to verify the theoretical results.
基金supported by the National Natural Science Foundation of China(No.11072038)the Municipal Key Programs of Natural Science Foundation of Beijing(No.KZ201110772039)
文摘An open-plus-closed-loop (OPCL) control problem for the chaotic motion of a 3D rigid pendulum subjected to a constant gravitationM force is studied. The 3D rigid pendulum is assumed to be consist of a rigid body supported by a fixed and frictionless pivot with three rotational degrees. In order to avoid the singular phenomenon of Euler's angular velocity equation, the quaternion kinematic equation is used to describe the motion of the 3D rigid pendulum. An OPCL controller for chaotic motion of a 3D rigid pendulum at equilibrium position is designed. This OPCL controller contains two parts: the open-loop part to construct an ideal trajectory and the closed-loop part to stabilize the 3D rigid pendulum. Simulation results show that the controller is effective and efficient.
基金supported by the Key Project of Science and Technology Research of Ministry of Educationof China (No. 108037)the National Natural Science Foundation of China (No. 10402008 and50535010)
文摘An improved OPCL method is developed and applied to both small swing and giant rotation synchronization of a two-link mechanism. Transition processes of the two kinds of synchronization are discussed. Comparisons of different motion characteristics of the two-link synchronization and the effects of different control parameters on synchronous processes are investigated with numerical simulations.
文摘基于开闭环控制的思想,设计了一类由外激力与线性误差反馈组成的开闭环控制器,研究了Mathieu-Duffing振子混沌轨道至任意目标周期轨道的控制问题;同时,利用Liapunov稳定性理论与二阶常微分方程初值问题的一个比较定理,证明了上述开闭环控制夹带盆(basin of entrainment)的全局性.最后,利用数值模拟,验证了理论结果的正确性.