A Fourier-synthesized 40-GHz optical pulse train was successfully synchronized to an 8-GHz optical clock generated from a mode-locked fiber ring laser. The measured timing jitter of the synchronization was 0.43 ps.
Since the proof-of-principle demonstration of optical parametric amplification to efficiently amplify chirped laser pulses in 1992, optical parametric chirped pulse amplification(OPCPA) became the most promising met...Since the proof-of-principle demonstration of optical parametric amplification to efficiently amplify chirped laser pulses in 1992, optical parametric chirped pulse amplification(OPCPA) became the most promising method for the amplification of broadband optical pulses. In the meantime, we are witnessing an exciting progress in the development of powerful and ultrashort pulse laser systems that employ chirped pulse parametric amplifiers. The output power and pulse duration of these systems have ranged from a few gigawatts to hundreds of terawatts with a potential of tens of petawatts power level. Meanwhile, the output pulse duration based on optical parametric amplification has entered the range of fewoptical-cycle field. In this paper, we overview the basic principles, trends in development, and current state of the ultrashort and laser systems based on OPCPA, respectively.展开更多
We have developed a two-stage Ti:sapphire amplifier system which can produce 17- TW/23-fs pulses at a repetition rate 10Hz. A birefringent plate is used in the regenerative amplifier to alleviate gain narrowing, whil...We have developed a two-stage Ti:sapphire amplifier system which can produce 17- TW/23-fs pulses at a repetition rate 10Hz. A birefringent plate is used in the regenerative amplifier to alleviate gain narrowing, while an all- reflective cylindrical-mirror-based pulse stretcher and an acousto-optic programmable dispersive filter (AOPDF) are used to compensate for the higher order dispersion of the system.展开更多
The period-one oscillation produced by an external optical pulse injection driven semiconductor laser is applied to clock recovery and frequency division. By adjusting the repetition rate or injection power of the ext...The period-one oscillation produced by an external optical pulse injection driven semiconductor laser is applied to clock recovery and frequency division. By adjusting the repetition rate or injection power of the external injection optical pulses to lock the different harmonic frequencies of the period-one state, the clock recovery and the frequency division (the second and third frequency divisions) are achieved experimentally. In addition, in frequency locking ranges of 2 GHz and 1.9 GHz, the second and third frequency divisions are obtained with the phase noise lower than 100 dBc/Hz, respectively. Our experimental results are consistent well with the numerical simulations.展开更多
The generation of high-repetition rate(frep≥10 GHz)ultra-broadband optical frequency combs(OFCs)at 1550 nm and 1310 nm is investigated by seeding two types of highly nonlinear fibers(HNLFs)with 10 GHz picosecond puls...The generation of high-repetition rate(frep≥10 GHz)ultra-broadband optical frequency combs(OFCs)at 1550 nm and 1310 nm is investigated by seeding two types of highly nonlinear fibers(HNLFs)with 10 GHz picosecond pulses at the pump wavelength of 1550 nm.When pumped near the zero dispersion wavelength(ZDW)in the normal dispersion region of a HNLF,10 GHz flat-topped OFC with 43 nm bandwidth within 5 dB power variation is generated by self-phase modulation(SPM)-based OFC spectral broadening at 26.5 dBm pump power,and 291 fs pulse trains with 10 GHz repetition rate are obtained at 18 dBm pump power without complicated pulse shaping methods.Furthermore,when pumped in the abnormal dispersion region of a HNLF,OFCs with dispersive waves around 1310 nm are studied using a common HNLF and fluorotellurite fibers,which maintain the good coherence of the pump light at 1550 nm.At the same time,sufficient tunability of the generated dispersive waves is achieved when tuning the pump power or ZDW.展开更多
In this paper, the linear propagation characteristics of the exponential optical pulse with initial linear and nonlinear frequency chirp are numerically studied in a single mode fibre for β2 〈 0. It can be found tha...In this paper, the linear propagation characteristics of the exponential optical pulse with initial linear and nonlinear frequency chirp are numerically studied in a single mode fibre for β2 〈 0. It can be found that the temporal full width at half maximum and time-bandwidth product of exponential pulse monotonically increase with the increase of propagation distance and decrease with the increase of linear chirp C for C 〈 0.5, go through an initial decreasing stage near ζ= 1, then increase with the increase of propagation distance and linear chirp C for C 〉 0.5. The broadening of pulses with negative chirp is faster than that with positive chirp. The exponential pulse with linear chirp gradually evolves into a near-Gaussian pulse. The effect of nonlinear chirp on waveform of the pulse is much greater than that of linear chirp. The temporal waveform breaking of exponential pulse with nonlinear chirp is first observed in linear propagation. Furthermore, the expressions of the spectral width and time-bandwidth product of the exponential optical pulse with the frequency chirp are given by use of the numerical analysis method.展开更多
Starting from the extended nonlinear Schrodinger equation in which the self-steepening effect is included, the evolution and the splitting processes of continuous optical wave whose amplitude is perturbed into time re...Starting from the extended nonlinear Schrodinger equation in which the self-steepening effect is included, the evolution and the splitting processes of continuous optical wave whose amplitude is perturbed into time related ultra-short optical pulse trains in an optical fibre are numerically simulated by adopting the split-step Fourier algorithm. The results show that the self-steepening effect can cause the characteristic of the pulse trains to vary with time, which is different from the self-steepening-free case where the generated pulse trains consist of single pulses which are identical in width, intensity, and interval, namely when pulses move a certain distance, they turn into the pulse trains within a certain time range. Moreover, each single pulse may split into several sub-pulses. And as time goes on, the number of the sub-pulses will decrease gradually and the pulse width and the pulse intensity will change too. With the increase of the self-steepening parameter, the distance needed to generate time-dependent pulse trains will shorten. In addition, for a large self-steepening parameter and at the distance where more sub-pulses appear, the corresponding frequency spectra of pulse trains are also wider.展开更多
In this paper, a new method is proposed to generate broad supercontinuum (SC) spectra in the single-mode optical fibre with concave dispersion profile, We numerically simulate pulse evolutions and discuss physics me...In this paper, a new method is proposed to generate broad supercontinuum (SC) spectra in the single-mode optical fibre with concave dispersion profile, We numerically simulate pulse evolutions and discuss physics mechanism in detail for SC spectrum generation in the optical fibre with concave dispersion profile. Furthermore, general criteria are presented for specifying the shape of SC spectrum by introducing normalized parameters, which are related to the fibres and the initial pump pulses. The results show that the flat and broad SC spectra are indeed generated in our proposed optical fibre.展开更多
We demonstrate a novel picosecond optical parametric preamplification to generate high-stability, high-energy and high-contrast seed pulses. The 5ps seed pulse is amplified from 60pJ to 300μJ with an 8.6ps/ 3mJ pump ...We demonstrate a novel picosecond optical parametric preamplification to generate high-stability, high-energy and high-contrast seed pulses. The 5ps seed pulse is amplified from 60pJ to 300μJ with an 8.6ps/ 3mJ pump laser in a signal stage of short pulse non-collinear optical parametric chirped pulse amplification. The total gain is more than 106 and the rms energy stability is under 1.35%. The contrast ratio is higher than 10s within a scale of 20ps before the main pulse. Consequently, the improvement factor of the signal contrast is approximately equal to the gain 106 outside the pump window.展开更多
In this paper,we present a novel ultrashort pulse shaper based on complex-modulated long-period-grating coupler(CM-LPGC).Temporal rectangular waveform with 2-ps full width at half maximum(FWHM) is obtained by tran...In this paper,we present a novel ultrashort pulse shaper based on complex-modulated long-period-grating coupler(CM-LPGC).Temporal rectangular waveform with 2-ps full width at half maximum(FWHM) is obtained by transforming the input Gaussian pulse.Tolerances of the CM-LPGC-based shaper to various non-ideal excitation conditions and fabricating errors are investigated.Results confirm that CM-LPGC is stable and suitable for optical pulse shaping operation.展开更多
Combined with the optical beam deflection,a novel approach of phase matched broadband scanning optical parametric chirped pulse amplification(OPCPA)was proposed.For this scheme,there was no superfluous operations to t...Combined with the optical beam deflection,a novel approach of phase matched broadband scanning optical parametric chirped pulse amplification(OPCPA)was proposed.For this scheme,there was no superfluous operations to the chirped signal pulse which propagated in a changeless direction straightforward,but the pump beam were deflected in space with time by passing through a KTN crystal,which was applied with varied driving voltage.The theories of phase matching of each chirped signal frequency based on pump beam deflection was analyzed detailedly.And the type-I amplification of chirped signal with 800 nm central wavelength and 20 nm bandwidth pumped by 532 nm in BBO crystal was simulated as a case in point.The simulation results showed that the spectral distribution of chirped signal pulse was almost the same as the initial form,i.e.,there was nearly no narrowing on the amplified spectrum by using of the scanning OPCPA based on pump beam deflection.In addition,the simulations demonstrated that it was worth minimizing the voltage deviation applied to KTN crystal as much as possible for the sake of better waveform,larger bandwidth and higher conversion efficiency of amplified signal pulse in the proposed scanning OPCPA.展开更多
Neuromorphic computing simulates the operation of biological brain function for information processing and can potentially solve the bottleneck of the von Neumann architecture.This computing is realized based on memri...Neuromorphic computing simulates the operation of biological brain function for information processing and can potentially solve the bottleneck of the von Neumann architecture.This computing is realized based on memristive hardware neural networks in which synaptic devices that mimic biological synapses of the brain are the primary units.Mimicking synaptic functions with these devices is critical in neuromorphic systems.In the last decade,electrical and optical signals have been incorporated into the synaptic devices and promoted the simulation of various synaptic functions.In this review,these devices are discussed by categorizing them into electrically stimulated,optically stimulated,and photoelectric synergetic synaptic devices based on stimulation of electrical and optical signals.The working mechanisms of the devices are analyzed in detail.This is followed by a discussion of the progress in mimicking synaptic functions.In addition,existing application scenarios of various synaptic devices are outlined.Furthermore,the performances and future development of the synaptic devices that could be significant for building efficient neuromorphic systems are prospected.展开更多
The propagation of dark solitons in nonlinear media that include gain and Joss described by a nonlinear Schroedinger equation is investigated. Based on the direct approach of perturbation theorv, the width, height and...The propagation of dark solitons in nonlinear media that include gain and Joss described by a nonlinear Schroedinger equation is investigated. Based on the direct approach of perturbation theorv, the width, height and other related quantities of dark solitons are obtained. It is shown that stationarv propagation of dark solitons is found to be possible in the presence of both gain and absorption. The results obtained by means of our analytic method are in excellent agreement with numerical simulations. Our results are helpful for the research into the optical soliton transmission system.展开更多
We theoretically investigate the coherent enhancement of resonant two-photon transitions (TPT) in a three-level atomic system. The TPT can be coherently enhanced by modulating spectral amplitude due to eliminating t...We theoretically investigate the coherent enhancement of resonant two-photon transitions (TPT) in a three-level atomic system. The TPT can be coherently enhanced by modulating spectral amplitude due to eliminating the destructive interference, though partial laser energy losses. Maximal enhancement of TPT can be achieved by modulating spectral phase due to establishing completely constructive interference. Our research provides a theoretical basis for experimental investigation and appears to have potential application on coherent control in the complicated quantum system.展开更多
Relationship between the initial chirp of super-Gaussian pulse and dispersion and nonlinearity effects of a single-mode fiber in the optical communication system using midway optical phase conjugation is analyzed. The...Relationship between the initial chirp of super-Gaussian pulse and dispersion and nonlinearity effects of a single-mode fiber in the optical communication system using midway optical phase conjugation is analyzed. The results of numerical simulations are useful for improving compensation for pulse distortion.展开更多
We propose a scheme for long-distance quantum state transfer between different atoms based on cavity-assisted interactions. In our scheme, a coherent optical pulse sequentially interacts with two distant atoms trapped...We propose a scheme for long-distance quantum state transfer between different atoms based on cavity-assisted interactions. In our scheme, a coherent optical pulse sequentially interacts with two distant atoms trapped in separated cavities. Through the measurement of the state of the first atom and the homodyne detection of the final output coherent light, the quantum state can be transferred into the second atom with a success probability of unity and a fidelity of unity. In addition, our scheme neither requires the high-Q cavity working in the strong coupling regime nor employs the single-photon quantum channel, which greatly relaxes the experimental requirements.展开更多
We present a compact and cost-effective mJ-level femtosecond laser system operating at a center wavelength of approximately 2.15μm.An affordable two-stage ytterbium-doped yttrium aluminum garnet(Yb:YAG)chirped pulse ...We present a compact and cost-effective mJ-level femtosecond laser system operating at a center wavelength of approximately 2.15μm.An affordable two-stage ytterbium-doped yttrium aluminum garnet(Yb:YAG)chirped pulse amplifier provides more than 10 mJ,approximately 1.2 ps pulses at 1030 nm to pump a three-stage optical parametric chirped pulse amplifier(OPCPA)based on bismuth borate crystals and to drive the supercontinuum seed in the YAG crystal.The energy of the amplified pulses in the wavelength range of 1.95–2.4μm reached 2.25 mJ with a pump-tosignal conversion efficiency of approximately 25%in the last OPCPA stage.These pulses were compressed to 38 fs in a pair of Suprasil 300 glass prisms.展开更多
The behavior of argon plasma driven by nanosecond pulsed plasma in a low-pressure plasma reactor is investigated using a global model, and the results are compared with the experimental measurements. The time evolutio...The behavior of argon plasma driven by nanosecond pulsed plasma in a low-pressure plasma reactor is investigated using a global model, and the results are compared with the experimental measurements. The time evolution of plasma density and the electron energy probability function are calculated by solving the energy balance and Boltzmann equations. During and shortly after the discharge pulse, the electron energy probability function can be represented by a bi-Maxwellian distribution, indicating two energy groups of electrons. According to the effective electron temperature calculation, we find that there are more high-energy electrons that play an important role in the excitation and ionization processes than low-energy electrons. The effective electron temperature is also measured via optical emission spectroscopy to evaluate the simulation model. In the comparison, the simulation results are found to be in agreement with the measure- ments. Furthermore, variations of the effective electron temperature are presented versus other discharge parameters, such as pulse width time, pulse rise time and gas pressure.展开更多
Peculiarities of propagation of femtosecond pulses through a focusing diffractive optical element (DOE) are considered. It is shown that the time delay between the pulse and phase wavefronts can be decreased by fabric...Peculiarities of propagation of femtosecond pulses through a focusing diffractive optical element (DOE) are considered. It is shown that the time delay between the pulse and phase wavefronts can be decreased by fabricating the DOE on the optimal curvilinear surface.展开更多
A novel scheme is proposed to transform a Gaussian optical pulse to a millimeter-wave (mm-wave) frequency modulation pulse by using a Fabry-Perot interferometer (FPI) for radio-over-fiber (ROF) system. It is sho...A novel scheme is proposed to transform a Gaussian optical pulse to a millimeter-wave (mm-wave) frequency modulation pulse by using a Fabry-Perot interferometer (FPI) for radio-over-fiber (ROF) system. It is shown that modulation frequency of mm-wave is determined by the optical path of the Fabry-Perot (F-P) cavity, and amplitude decay time and energy transfer efficiency axe related to the reflectivity of the F-P cavity mirror. The effect of pulse train extension on inter-symbol interference is also discussed.展开更多
文摘A Fourier-synthesized 40-GHz optical pulse train was successfully synchronized to an 8-GHz optical clock generated from a mode-locked fiber ring laser. The measured timing jitter of the synchronization was 0.43 ps.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61378030 and 11127901)the National Basic Research Program of China(Grant No.2011CB808101)the International S&T Cooperation Program of China(Grant No.2011DFA11300)
文摘Since the proof-of-principle demonstration of optical parametric amplification to efficiently amplify chirped laser pulses in 1992, optical parametric chirped pulse amplification(OPCPA) became the most promising method for the amplification of broadband optical pulses. In the meantime, we are witnessing an exciting progress in the development of powerful and ultrashort pulse laser systems that employ chirped pulse parametric amplifiers. The output power and pulse duration of these systems have ranged from a few gigawatts to hundreds of terawatts with a potential of tens of petawatts power level. Meanwhile, the output pulse duration based on optical parametric amplification has entered the range of fewoptical-cycle field. In this paper, we overview the basic principles, trends in development, and current state of the ultrashort and laser systems based on OPCPA, respectively.
文摘We have developed a two-stage Ti:sapphire amplifier system which can produce 17- TW/23-fs pulses at a repetition rate 10Hz. A birefringent plate is used in the regenerative amplifier to alleviate gain narrowing, while an all- reflective cylindrical-mirror-based pulse stretcher and an acousto-optic programmable dispersive filter (AOPDF) are used to compensate for the higher order dispersion of the system.
基金Project supported by the National Natural Science Foundation of China (Grant No 60577019)
文摘The period-one oscillation produced by an external optical pulse injection driven semiconductor laser is applied to clock recovery and frequency division. By adjusting the repetition rate or injection power of the external injection optical pulses to lock the different harmonic frequencies of the period-one state, the clock recovery and the frequency division (the second and third frequency divisions) are achieved experimentally. In addition, in frequency locking ranges of 2 GHz and 1.9 GHz, the second and third frequency divisions are obtained with the phase noise lower than 100 dBc/Hz, respectively. Our experimental results are consistent well with the numerical simulations.
基金We are grateful for financial supports from the National Natural Science Foundation of China(Grant No.61527823)the National Key R&D Program of China(Grant No.2017YFB0405301).
文摘The generation of high-repetition rate(frep≥10 GHz)ultra-broadband optical frequency combs(OFCs)at 1550 nm and 1310 nm is investigated by seeding two types of highly nonlinear fibers(HNLFs)with 10 GHz picosecond pulses at the pump wavelength of 1550 nm.When pumped near the zero dispersion wavelength(ZDW)in the normal dispersion region of a HNLF,10 GHz flat-topped OFC with 43 nm bandwidth within 5 dB power variation is generated by self-phase modulation(SPM)-based OFC spectral broadening at 26.5 dBm pump power,and 291 fs pulse trains with 10 GHz repetition rate are obtained at 18 dBm pump power without complicated pulse shaping methods.Furthermore,when pumped in the abnormal dispersion region of a HNLF,OFCs with dispersive waves around 1310 nm are studied using a common HNLF and fluorotellurite fibers,which maintain the good coherence of the pump light at 1550 nm.At the same time,sufficient tunability of the generated dispersive waves is achieved when tuning the pump power or ZDW.
文摘In this paper, the linear propagation characteristics of the exponential optical pulse with initial linear and nonlinear frequency chirp are numerically studied in a single mode fibre for β2 〈 0. It can be found that the temporal full width at half maximum and time-bandwidth product of exponential pulse monotonically increase with the increase of propagation distance and decrease with the increase of linear chirp C for C 〈 0.5, go through an initial decreasing stage near ζ= 1, then increase with the increase of propagation distance and linear chirp C for C 〉 0.5. The broadening of pulses with negative chirp is faster than that with positive chirp. The exponential pulse with linear chirp gradually evolves into a near-Gaussian pulse. The effect of nonlinear chirp on waveform of the pulse is much greater than that of linear chirp. The temporal waveform breaking of exponential pulse with nonlinear chirp is first observed in linear propagation. Furthermore, the expressions of the spectral width and time-bandwidth product of the exponential optical pulse with the frequency chirp are given by use of the numerical analysis method.
基金supported by Key Program of Natural Science Foundation of Educational Commission of Sichuan Province, China (GrantNo 2006A124)the Fundamental Application Research Project of the Department of Science and Technology of Sichuan Province,China (Grant No 05JY029-084)the Foundation of Science and Technology Development of Chengdu University of Information Technology, China (Grant No KYTZ20060604)
文摘Starting from the extended nonlinear Schrodinger equation in which the self-steepening effect is included, the evolution and the splitting processes of continuous optical wave whose amplitude is perturbed into time related ultra-short optical pulse trains in an optical fibre are numerically simulated by adopting the split-step Fourier algorithm. The results show that the self-steepening effect can cause the characteristic of the pulse trains to vary with time, which is different from the self-steepening-free case where the generated pulse trains consist of single pulses which are identical in width, intensity, and interval, namely when pulses move a certain distance, they turn into the pulse trains within a certain time range. Moreover, each single pulse may split into several sub-pulses. And as time goes on, the number of the sub-pulses will decrease gradually and the pulse width and the pulse intensity will change too. With the increase of the self-steepening parameter, the distance needed to generate time-dependent pulse trains will shorten. In addition, for a large self-steepening parameter and at the distance where more sub-pulses appear, the corresponding frequency spectra of pulse trains are also wider.
基金Project supported by the Natural Science Foundation of Guangdong Province of China (Grant No 04010397) and the Excellent reacher Foundation of Cuangdong Province (Grant No Q02084).
文摘In this paper, a new method is proposed to generate broad supercontinuum (SC) spectra in the single-mode optical fibre with concave dispersion profile, We numerically simulate pulse evolutions and discuss physics mechanism in detail for SC spectrum generation in the optical fibre with concave dispersion profile. Furthermore, general criteria are presented for specifying the shape of SC spectrum by introducing normalized parameters, which are related to the fibres and the initial pump pulses. The results show that the flat and broad SC spectra are indeed generated in our proposed optical fibre.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11604350 and 61405211
文摘We demonstrate a novel picosecond optical parametric preamplification to generate high-stability, high-energy and high-contrast seed pulses. The 5ps seed pulse is amplified from 60pJ to 300μJ with an 8.6ps/ 3mJ pump laser in a signal stage of short pulse non-collinear optical parametric chirped pulse amplification. The total gain is more than 106 and the rms energy stability is under 1.35%. The contrast ratio is higher than 10s within a scale of 20ps before the main pulse. Consequently, the improvement factor of the signal contrast is approximately equal to the gain 106 outside the pump window.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61007007 and 61101110)the Foundation of Beijing Municipal Committee of CPC Organization Department (Grant No. 2012D005002000001)
文摘In this paper,we present a novel ultrashort pulse shaper based on complex-modulated long-period-grating coupler(CM-LPGC).Temporal rectangular waveform with 2-ps full width at half maximum(FWHM) is obtained by transforming the input Gaussian pulse.Tolerances of the CM-LPGC-based shaper to various non-ideal excitation conditions and fabricating errors are investigated.Results confirm that CM-LPGC is stable and suitable for optical pulse shaping operation.
基金supported by Science and Technology Innovation Seedling Project of Sichuan Province,China(Grant No.2018100)Major Project of CDNU(Grant No.CS18ZDZ0511).
文摘Combined with the optical beam deflection,a novel approach of phase matched broadband scanning optical parametric chirped pulse amplification(OPCPA)was proposed.For this scheme,there was no superfluous operations to the chirped signal pulse which propagated in a changeless direction straightforward,but the pump beam were deflected in space with time by passing through a KTN crystal,which was applied with varied driving voltage.The theories of phase matching of each chirped signal frequency based on pump beam deflection was analyzed detailedly.And the type-I amplification of chirped signal with 800 nm central wavelength and 20 nm bandwidth pumped by 532 nm in BBO crystal was simulated as a case in point.The simulation results showed that the spectral distribution of chirped signal pulse was almost the same as the initial form,i.e.,there was nearly no narrowing on the amplified spectrum by using of the scanning OPCPA based on pump beam deflection.In addition,the simulations demonstrated that it was worth minimizing the voltage deviation applied to KTN crystal as much as possible for the sake of better waveform,larger bandwidth and higher conversion efficiency of amplified signal pulse in the proposed scanning OPCPA.
基金This work was supported by the National Natural Science Foundation of China(11804166,U1732126,51872145)the China Postdoctoral Science Foundation(2018M630587)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20200760,BK20191472)the Introduction of Talents Project of Nanjing University of Posts and Telecommunications(NY220097).
文摘Neuromorphic computing simulates the operation of biological brain function for information processing and can potentially solve the bottleneck of the von Neumann architecture.This computing is realized based on memristive hardware neural networks in which synaptic devices that mimic biological synapses of the brain are the primary units.Mimicking synaptic functions with these devices is critical in neuromorphic systems.In the last decade,electrical and optical signals have been incorporated into the synaptic devices and promoted the simulation of various synaptic functions.In this review,these devices are discussed by categorizing them into electrically stimulated,optically stimulated,and photoelectric synergetic synaptic devices based on stimulation of electrical and optical signals.The working mechanisms of the devices are analyzed in detail.This is followed by a discussion of the progress in mimicking synaptic functions.In addition,existing application scenarios of various synaptic devices are outlined.Furthermore,the performances and future development of the synaptic devices that could be significant for building efficient neuromorphic systems are prospected.
基金Supported by the National Natural Science Foundation of China under Grant No 10375022.
文摘The propagation of dark solitons in nonlinear media that include gain and Joss described by a nonlinear Schroedinger equation is investigated. Based on the direct approach of perturbation theorv, the width, height and other related quantities of dark solitons are obtained. It is shown that stationarv propagation of dark solitons is found to be possible in the presence of both gain and absorption. The results obtained by means of our analytic method are in excellent agreement with numerical simulations. Our results are helpful for the research into the optical soliton transmission system.
基金Supported by the National Natural Science Foundation of China under Grant No 10574046, the National Basic Research Programme of China under Grant Nos 2006CB806006 and 2006CB921105, the Programme for Changjiang Scholars and Innovative Research Team in University (PCSIRT), the Programme for New Century Excellent Talents in University (NCET-04-0420), the Doctoral Programme of High Education (No 20050269011), the Phosphor Programme of Shanghai Science and Technology Committee (No 06QH14003), and the Shanghai Pujiang Programme (No 06PJ14035).
文摘We theoretically investigate the coherent enhancement of resonant two-photon transitions (TPT) in a three-level atomic system. The TPT can be coherently enhanced by modulating spectral amplitude due to eliminating the destructive interference, though partial laser energy losses. Maximal enhancement of TPT can be achieved by modulating spectral phase due to establishing completely constructive interference. Our research provides a theoretical basis for experimental investigation and appears to have potential application on coherent control in the complicated quantum system.
文摘Relationship between the initial chirp of super-Gaussian pulse and dispersion and nonlinearity effects of a single-mode fiber in the optical communication system using midway optical phase conjugation is analyzed. The results of numerical simulations are useful for improving compensation for pulse distortion.
基金supported by the National Natural Science Foundation of China(Grant No.60978009)the National Basic Research Program of China(Grant Nos.2009CB929604 and 2007CB925204)
文摘We propose a scheme for long-distance quantum state transfer between different atoms based on cavity-assisted interactions. In our scheme, a coherent optical pulse sequentially interacts with two distant atoms trapped in separated cavities. Through the measurement of the state of the first atom and the homodyne detection of the final output coherent light, the quantum state can be transferred into the second atom with a success probability of unity and a fidelity of unity. In addition, our scheme neither requires the high-Q cavity working in the strong coupling regime nor employs the single-photon quantum channel, which greatly relaxes the experimental requirements.
基金This research was sponsored by the Research Council of Lithuania under contract S-MIP-21-30.Two of the authors are grateful for NATO SPS G5734 fellowships.
文摘We present a compact and cost-effective mJ-level femtosecond laser system operating at a center wavelength of approximately 2.15μm.An affordable two-stage ytterbium-doped yttrium aluminum garnet(Yb:YAG)chirped pulse amplifier provides more than 10 mJ,approximately 1.2 ps pulses at 1030 nm to pump a three-stage optical parametric chirped pulse amplifier(OPCPA)based on bismuth borate crystals and to drive the supercontinuum seed in the YAG crystal.The energy of the amplified pulses in the wavelength range of 1.95–2.4μm reached 2.25 mJ with a pump-tosignal conversion efficiency of approximately 25%in the last OPCPA stage.These pulses were compressed to 38 fs in a pair of Suprasil 300 glass prisms.
基金supported by National Natural Science Foundation of China (Nos.10875023,11175035)the Ph.D research program(No.200801411040 ) of Educational Ministry+1 种基金the Scientific and Technical Foundation of Liaoning Province (No.20082168)National Magnetic Confinement Fusion Science Program of China (Nos.2009GB106004,2008CB717801)
文摘The behavior of argon plasma driven by nanosecond pulsed plasma in a low-pressure plasma reactor is investigated using a global model, and the results are compared with the experimental measurements. The time evolution of plasma density and the electron energy probability function are calculated by solving the energy balance and Boltzmann equations. During and shortly after the discharge pulse, the electron energy probability function can be represented by a bi-Maxwellian distribution, indicating two energy groups of electrons. According to the effective electron temperature calculation, we find that there are more high-energy electrons that play an important role in the excitation and ionization processes than low-energy electrons. The effective electron temperature is also measured via optical emission spectroscopy to evaluate the simulation model. In the comparison, the simulation results are found to be in agreement with the measure- ments. Furthermore, variations of the effective electron temperature are presented versus other discharge parameters, such as pulse width time, pulse rise time and gas pressure.
文摘Peculiarities of propagation of femtosecond pulses through a focusing diffractive optical element (DOE) are considered. It is shown that the time delay between the pulse and phase wavefronts can be decreased by fabricating the DOE on the optimal curvilinear surface.
文摘A novel scheme is proposed to transform a Gaussian optical pulse to a millimeter-wave (mm-wave) frequency modulation pulse by using a Fabry-Perot interferometer (FPI) for radio-over-fiber (ROF) system. It is shown that modulation frequency of mm-wave is determined by the optical path of the Fabry-Perot (F-P) cavity, and amplitude decay time and energy transfer efficiency axe related to the reflectivity of the F-P cavity mirror. The effect of pulse train extension on inter-symbol interference is also discussed.