This paper presents an isolated DC/AC/DC converter using a middle frequency transformer coupling two modular multilevel converters(MMC),suitable for interconnecting DC transmission lines of different voltage levels in...This paper presents an isolated DC/AC/DC converter using a middle frequency transformer coupling two modular multilevel converters(MMC),suitable for interconnecting DC transmission lines of different voltage levels in high voltage direct current(HVDC)system.The basic operational principle of the isolated module multilevel DC/DC converter(IMMDCC)is analyzed.The dynamic model of IMMDCC is studied in detail and the transient relationship between DC side and AC side of IMMDCC is revealed,which is physically straightforward for understanding the power transfer in IMMDCC.The control strategy in D-Q coordinate system is put forward,and the fault characteristic and corresponding protection method is analyzed.Finally,computer simulation using Matlab/Simulink is performed to verify the dynamic model and the proposed control strategy.The simulation results show good performances and the quick response ability of the proposed control strategy.展开更多
The full-bridge converters usually use transformer leakage inductance and parallel resonant capacitors to achieve smooth current commutation and soft switching functions,which can easily cause problems such as energy ...The full-bridge converters usually use transformer leakage inductance and parallel resonant capacitors to achieve smooth current commutation and soft switching functions,which can easily cause problems such as energy leakage and significant duty cycle loss.This paper designs a novel full-bridge zero-current(FB-ZCS)converter with series resonant capacitors and proposes a frequency and phase-shift synthesis modulation(FPSSM)control strategy based on this topology.Compared with the traditional parallel resonant capacitor circuit,the passive components used are significantly reduced,the structure is simple,and there is only a slight energy loss.By controlling the charging time of the capacitor,it can be achieved without additional switches or auxiliary circuits.The automatic control of capacitor energy based on input current addresses the low efficiency of the traditional control strategies.This paper introduces its principle in detail and verifies it through simulation.Finally,an experimental prototype was built further to demonstrate the feasibility of the theory through experiments.The module can be applied to a photovoltaic DC collection system using input parallel output series(IPOS)cascade to provide a new topology for large-scale,long-distance DC transmission.展开更多
文摘This paper presents an isolated DC/AC/DC converter using a middle frequency transformer coupling two modular multilevel converters(MMC),suitable for interconnecting DC transmission lines of different voltage levels in high voltage direct current(HVDC)system.The basic operational principle of the isolated module multilevel DC/DC converter(IMMDCC)is analyzed.The dynamic model of IMMDCC is studied in detail and the transient relationship between DC side and AC side of IMMDCC is revealed,which is physically straightforward for understanding the power transfer in IMMDCC.The control strategy in D-Q coordinate system is put forward,and the fault characteristic and corresponding protection method is analyzed.Finally,computer simulation using Matlab/Simulink is performed to verify the dynamic model and the proposed control strategy.The simulation results show good performances and the quick response ability of the proposed control strategy.
基金This work was supported by the Key R&D Program of Tianjin(No.20YFYSGX00060).
文摘The full-bridge converters usually use transformer leakage inductance and parallel resonant capacitors to achieve smooth current commutation and soft switching functions,which can easily cause problems such as energy leakage and significant duty cycle loss.This paper designs a novel full-bridge zero-current(FB-ZCS)converter with series resonant capacitors and proposes a frequency and phase-shift synthesis modulation(FPSSM)control strategy based on this topology.Compared with the traditional parallel resonant capacitor circuit,the passive components used are significantly reduced,the structure is simple,and there is only a slight energy loss.By controlling the charging time of the capacitor,it can be achieved without additional switches or auxiliary circuits.The automatic control of capacitor energy based on input current addresses the low efficiency of the traditional control strategies.This paper introduces its principle in detail and verifies it through simulation.Finally,an experimental prototype was built further to demonstrate the feasibility of the theory through experiments.The module can be applied to a photovoltaic DC collection system using input parallel output series(IPOS)cascade to provide a new topology for large-scale,long-distance DC transmission.