The evaluation of handover performance is essential for ensuring seamless user experience under innovative application scenarios in the fifth generation(5G)and beyond era,including autonomous driving,mobile augmented ...The evaluation of handover performance is essential for ensuring seamless user experience under innovative application scenarios in the fifth generation(5G)and beyond era,including autonomous driving,mobile augmented and virtual reality.However,due to the hardware constrains of a sectored multiprobe anechoic chamber(SMPAC),switching among multiple channel models is of low precision with a high cost in traditional over-the-air(OTA)test solutions.In this paper,we present an efficient and repeatable emulation strategy to reconstruct dynamic millimeter-wave(mm Wave)channels in laboratories for multiple-input multiple-output(MIMO)mobile devices.Firstly,we propose a novel evaluation metric,called average power angular spectrum similarity percentage(APSP),which minimizes the unexpected impact induced by the indefinite condition of adaptive antenna arrays in mm Wave terminals during handover process.Moreover,we propose a partitioned probe configuration strategy by designing a beam directivitybased switching circuit,which enables quick changes of probe configurations in SMPAC.Simulation results demonstrate the effectiveness of the proposed algorithms,thus providing a guideline for the reconstruction of the dynamic channel in different scenarios with resource limitation.展开更多
With the ever-growing requirement for higher data rates, terminals supporting multiple-input multiple-output (MIMO) technologies are being developed for next-generation. As for wireless device manufacturers, a radio p...With the ever-growing requirement for higher data rates, terminals supporting multiple-input multiple-output (MIMO) technologies are being developed for next-generation. As for wireless device manufacturers, a radio performance evaluation of multi-antenna terminals in desired environments is mandatory before product release. This paper discusses the Over the Air (OTA) performance evaluation of antenna diversity systems in Indoor and Outdoor multi-path propagation channel models inside anechoic chamber, in terms of correlation coefficients and diversity gain (DG). These channel models have been emulated in terms of angles of arrivals (AoA) and cross-polarization ratio (XPR) with Rayleigh fading. For this purpose, SATIMO SG24 measurement system has been used. However, the actual configuration of this system is not able to emulate desired realistic environments. Therefore, an innovative methodology based on the SG24 probes control has been developed. The obtained results in simulations and measurements have shown a good agreement.展开更多
Millimeter-wave(mmWave)communication is regarded as the key enabling component for fifth-generation(5G)cellular systems due to the large available spectrum bandwidth.To make mmWave new radio(NR)a reality,tremendous ef...Millimeter-wave(mmWave)communication is regarded as the key enabling component for fifth-generation(5G)cellular systems due to the large available spectrum bandwidth.To make mmWave new radio(NR)a reality,tremendous efforts have been exerted from the industry and academia.Performance evaluation of mmWave NR is a mandatory step and the key to ensuring the success of mmWave 5G deployment.Over-the-air(OTA)radiated method of testing mmWave NR in laboratory conditions is highly attractive,since it facilitates virtual field testing of mmWave devices in realistic propagation conditions.In this paper,we first discuss the need for and challenges in OTA measurement of mmWave 5G NR under fading channel conditions.After that,two promising candidate solutions,i.e.,wireless cable and multi-probe anechoic chamber(MPAC),are detailed.Their principles,applicability for mmWave NR,and main challenges are discussed.Furthermore,preliminary experimental validation results in a frequency range 2 anechoic chamber are demonstrated for the wireless cable and MPAC methods at 28 GHz.展开更多
Over-the-air(OTA)testing is an industry standard practice for evaluating transceiver performance in wireless devices.For the fifth generation(5G)and beyond wireless systems with high integration,OTA testing is probabl...Over-the-air(OTA)testing is an industry standard practice for evaluating transceiver performance in wireless devices.For the fifth generation(5G)and beyond wireless systems with high integration,OTA testing is probably the only reliable method to accurately measure the transceiver performance,suitable for certification as well as for providing feedback for design verification and optimization.Further,multiple-input multiple-output(MIMO)technology is extensively applied for stable connection,high throughput rate,and low latency.In this paper,we provide an overview of the three main methods for evaluating the MIMO OTA performance,namely,the multiprobe anechoic chamber(MPAC)method,the reverberation chamber plus channel emulator(RC+CE)method,and the radiated two-stage(RTS)method,with the aim of providing a useful guideline for developing effective wireless performance testing in future 5G-and-beyond wireless systems.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)under grant U21A20448。
文摘The evaluation of handover performance is essential for ensuring seamless user experience under innovative application scenarios in the fifth generation(5G)and beyond era,including autonomous driving,mobile augmented and virtual reality.However,due to the hardware constrains of a sectored multiprobe anechoic chamber(SMPAC),switching among multiple channel models is of low precision with a high cost in traditional over-the-air(OTA)test solutions.In this paper,we present an efficient and repeatable emulation strategy to reconstruct dynamic millimeter-wave(mm Wave)channels in laboratories for multiple-input multiple-output(MIMO)mobile devices.Firstly,we propose a novel evaluation metric,called average power angular spectrum similarity percentage(APSP),which minimizes the unexpected impact induced by the indefinite condition of adaptive antenna arrays in mm Wave terminals during handover process.Moreover,we propose a partitioned probe configuration strategy by designing a beam directivitybased switching circuit,which enables quick changes of probe configurations in SMPAC.Simulation results demonstrate the effectiveness of the proposed algorithms,thus providing a guideline for the reconstruction of the dynamic channel in different scenarios with resource limitation.
文摘With the ever-growing requirement for higher data rates, terminals supporting multiple-input multiple-output (MIMO) technologies are being developed for next-generation. As for wireless device manufacturers, a radio performance evaluation of multi-antenna terminals in desired environments is mandatory before product release. This paper discusses the Over the Air (OTA) performance evaluation of antenna diversity systems in Indoor and Outdoor multi-path propagation channel models inside anechoic chamber, in terms of correlation coefficients and diversity gain (DG). These channel models have been emulated in terms of angles of arrivals (AoA) and cross-polarization ratio (XPR) with Rayleigh fading. For this purpose, SATIMO SG24 measurement system has been used. However, the actual configuration of this system is not able to emulate desired realistic environments. Therefore, an innovative methodology based on the SG24 probes control has been developed. The obtained results in simulations and measurements have shown a good agreement.
基金Project supported by the InnoExplorer Project Funded by Innovation Fund Denmark(No.20199122-00089A)。
文摘Millimeter-wave(mmWave)communication is regarded as the key enabling component for fifth-generation(5G)cellular systems due to the large available spectrum bandwidth.To make mmWave new radio(NR)a reality,tremendous efforts have been exerted from the industry and academia.Performance evaluation of mmWave NR is a mandatory step and the key to ensuring the success of mmWave 5G deployment.Over-the-air(OTA)radiated method of testing mmWave NR in laboratory conditions is highly attractive,since it facilitates virtual field testing of mmWave devices in realistic propagation conditions.In this paper,we first discuss the need for and challenges in OTA measurement of mmWave 5G NR under fading channel conditions.After that,two promising candidate solutions,i.e.,wireless cable and multi-probe anechoic chamber(MPAC),are detailed.Their principles,applicability for mmWave NR,and main challenges are discussed.Furthermore,preliminary experimental validation results in a frequency range 2 anechoic chamber are demonstrated for the wireless cable and MPAC methods at 28 GHz.
基金Project supported by the National Natural Science Foundation of China(No.61671203)。
文摘Over-the-air(OTA)testing is an industry standard practice for evaluating transceiver performance in wireless devices.For the fifth generation(5G)and beyond wireless systems with high integration,OTA testing is probably the only reliable method to accurately measure the transceiver performance,suitable for certification as well as for providing feedback for design verification and optimization.Further,multiple-input multiple-output(MIMO)technology is extensively applied for stable connection,high throughput rate,and low latency.In this paper,we provide an overview of the three main methods for evaluating the MIMO OTA performance,namely,the multiprobe anechoic chamber(MPAC)method,the reverberation chamber plus channel emulator(RC+CE)method,and the radiated two-stage(RTS)method,with the aim of providing a useful guideline for developing effective wireless performance testing in future 5G-and-beyond wireless systems.