提出一种适合心电信号(ECG)检测的OTA-C滤波器。为了达到低功耗、低截止频率、高直流增益、高阻带衰减、低谐波失真的目的,滤波器采用五阶巴特沃斯全差分低通滤波结构和高增益的两级单端输出OTA,其中OTA电路采用亚阈值区驱动、电流分流...提出一种适合心电信号(ECG)检测的OTA-C滤波器。为了达到低功耗、低截止频率、高直流增益、高阻带衰减、低谐波失真的目的,滤波器采用五阶巴特沃斯全差分低通滤波结构和高增益的两级单端输出OTA,其中OTA电路采用亚阈值区驱动、电流分流和源极负反馈等技术。采用SMIC 0.18-μm 1P6M CMOS工艺进行电路、版图设计及优化。仿真结果表明,滤波器在静态功耗为17.6μW,截止频率为240 Hz,直流增益为-6 d B,阻带衰减大于72 d B每五倍频,三次谐波失真小于-62 d B在400 m V时,适合应用于心电信号检测模拟前端。展开更多
A fifth order operational transconductance amplifier-C (OTA-C) Butterworth type low-pass filter with highly linear range and less passband attenuation is presented for wearable bio-telemetry monitoring applications ...A fifth order operational transconductance amplifier-C (OTA-C) Butterworth type low-pass filter with highly linear range and less passband attenuation is presented for wearable bio-telemetry monitoring applications in a UWB wireless body area network. The source degeneration structure applied in typical small transconduc- tance circuit is improved to provide a highly linear range for the OTA-C filter. Moreover, to reduce the passband attenuation of the filter, a cascode structure is employed as the output stage of the OTA. The OTA-based circuit is operated in weak inversion due to strict power limitation in the biomedical chip. The filter is fabricated in a SMIC 0.18-μm CMOS process. The measured results for the filter have shown a passband gain of -6.2 dB, while the -3-dB frequency is around 276 Hz. For the 0.8 Vpp sinusoidal input at 100 Hz, a total harmonic distortion (THD) of-56.8 dB is obtained. An electrocardiogram signal with noise interference is fed into this chip to validate the function of the designed filter.展开更多
文摘提出一种适合心电信号(ECG)检测的OTA-C滤波器。为了达到低功耗、低截止频率、高直流增益、高阻带衰减、低谐波失真的目的,滤波器采用五阶巴特沃斯全差分低通滤波结构和高增益的两级单端输出OTA,其中OTA电路采用亚阈值区驱动、电流分流和源极负反馈等技术。采用SMIC 0.18-μm 1P6M CMOS工艺进行电路、版图设计及优化。仿真结果表明,滤波器在静态功耗为17.6μW,截止频率为240 Hz,直流增益为-6 d B,阻带衰减大于72 d B每五倍频,三次谐波失真小于-62 d B在400 m V时,适合应用于心电信号检测模拟前端。
基金Project supported by the National Natural Science Foundation of China(Nos.61161003,61264001,61166004)the Guangxi Natural Science Foundation(No.2013GXNSFAA019333)
文摘A fifth order operational transconductance amplifier-C (OTA-C) Butterworth type low-pass filter with highly linear range and less passband attenuation is presented for wearable bio-telemetry monitoring applications in a UWB wireless body area network. The source degeneration structure applied in typical small transconduc- tance circuit is improved to provide a highly linear range for the OTA-C filter. Moreover, to reduce the passband attenuation of the filter, a cascode structure is employed as the output stage of the OTA. The OTA-based circuit is operated in weak inversion due to strict power limitation in the biomedical chip. The filter is fabricated in a SMIC 0.18-μm CMOS process. The measured results for the filter have shown a passband gain of -6.2 dB, while the -3-dB frequency is around 276 Hz. For the 0.8 Vpp sinusoidal input at 100 Hz, a total harmonic distortion (THD) of-56.8 dB is obtained. An electrocardiogram signal with noise interference is fed into this chip to validate the function of the designed filter.