针对多语义图像在用户图像检索反馈过程中带来的困扰,SVM在图像多分类过程中分类器同等对待等问题,提出基于K-means和SVM一对一多分类的图像反馈检索优化算法KWOVOSVM (K-means and weighted one-versus-one support vector machine)。...针对多语义图像在用户图像检索反馈过程中带来的困扰,SVM在图像多分类过程中分类器同等对待等问题,提出基于K-means和SVM一对一多分类的图像反馈检索优化算法KWOVOSVM (K-means and weighted one-versus-one support vector machine)。运用K-means算法对图像特征进行多次聚类,选取最具代表的信息图像样本供用户反馈;在用户反馈过程中,对其图像样本进行多分类训练时,通过欧式距离计算对每个分类器分配相对权重,使用户反馈次数减少,图像检索结果不断接近用户需求。实验结果表明,KWOVOSVM算法在查准率和满意度上有一定的提高。展开更多
文摘针对多语义图像在用户图像检索反馈过程中带来的困扰,SVM在图像多分类过程中分类器同等对待等问题,提出基于K-means和SVM一对一多分类的图像反馈检索优化算法KWOVOSVM (K-means and weighted one-versus-one support vector machine)。运用K-means算法对图像特征进行多次聚类,选取最具代表的信息图像样本供用户反馈;在用户反馈过程中,对其图像样本进行多分类训练时,通过欧式距离计算对每个分类器分配相对权重,使用户反馈次数减少,图像检索结果不断接近用户需求。实验结果表明,KWOVOSVM算法在查准率和满意度上有一定的提高。