This study uses the WRF-Chem model combined with the empirical kinetic modeling method(EKMA curve)to study the compound pollution event in Beijing that happened in 13−23 May 2017.Sensitivity tests are conducted to ana...This study uses the WRF-Chem model combined with the empirical kinetic modeling method(EKMA curve)to study the compound pollution event in Beijing that happened in 13−23 May 2017.Sensitivity tests are conducted to analyze ozone sensitivity to its precursors,and to develop emission reduction measures.The results suggest that the model can accurately simulate the compound pollution process of photochemistry and haze.When VOCs and NOx were reduced by the same proportion,the effect of O_(3)reduction at peak time was more obvious,and the effect during daytime was more significant than at night.The degree of change in ozone was peak time>daytime average.When reducing or increasing the ratio of precursors by 25%at the same time,the effect of reducing 25%VOCs on the average ozone concentration reduction was most significant.The degree of change in ozone decreased with increasing altitude,the location of the ozone maximum change shifted westward,and its range narrowed.As the altitude increases,the VOCs-limited zone decreases,VOCs sensitivity decreases,NOx sensitivity increases.The controlled area changed from near-surface VOCs-limited to high-altitude NOx-limited.Upon examining the EKMA curve,we have found that suburban and urban are sensitive to VOCs.The sensitivity tests indicate that when VOCs in suburban are reduced about 60%,the O_(3)-1h concentration could reach the standard,and when VOCs of the urban decreased by about 50%,the O_(3)-1h concentration could reach the standard.Thus,these findings could provide references for the control of compound air pollution in Beijing.展开更多
The simultaneous investigation on the parameters affecting the flow of electrically conductive fluids such as volumetric radiation,heat absorption,heat generation,and magnetic field(MF)is very vital due to its existen...The simultaneous investigation on the parameters affecting the flow of electrically conductive fluids such as volumetric radiation,heat absorption,heat generation,and magnetic field(MF)is very vital due to its existence in various sectors of industry and engineering.The present research focuses on mathematical modeling to simulate the cooling of a hot component through power-law(PL)nanofluid convection flow.The temperature reduction of the hot component inside a two-dimensional(2D)inclined chamber with two different cold wall shapes is evaluated.The formulation of the problem is derived with the lattice Boltzmann method(LBM)by code writing via the FORTRAN language.The variables such as the radiation parameter(0–1),the Hartmann number(0–75),the heat absorption/generation coefficient(−5–5),the fluid behavioral index(0.8–1.2),the Rayleigh number(103–105),the imposed MF angle(0°–90°),the chamber inclination angle(−90°–90°),and the cavity cold wall shape(smooth and curved)are investigated.The findings indicate that the presence of radiation increases the mean Nusselt number value for the shear-thickening,Newtonian,and shear thinning fluids by about 6.2%,4%,and 2%,respectively.In most cases,the presence of nanoparticles improves the heat transfer(HT)rate,especially in the cases where thermal conduction dominates convection.There is the lowest cooling performance index and MF effect for the cavity placed at an angle of 90°.The application in the design of electronic coolers and solar collectors is one of the practical cases of this numerical research.展开更多
Various lead-free ceramics have been investigated in search for new high-temperature dielectrics. In particular, Bi_4Ti_3O_(12) is a type of ferroelectric ceramics, which is supposed to replace leadcontaining cerami...Various lead-free ceramics have been investigated in search for new high-temperature dielectrics. In particular, Bi_4Ti_3O_(12) is a type of ferroelectric ceramics, which is supposed to replace leadcontaining ceramics for its outstanding dielectric properties in the near future. Ferroelectric ceramics of Bi_4Ti_3O_(12) made by conventional mixed oxide route have been studied by impedance spectroscopy in a wide range of temperature. X-ray diffraction patterns show that Bi_4Ti_3O_(12) ceramics are a single-phase of ferroelectric Bi-layered perovskite structure whether it is calcined at 800 ℃ or after sintering production. This study focused on the effect of the grain size on the electric properties of BIT ceramics. The BIT ceramics with different grain sizes were prepared at different sintering temperatures. Grain becomes coarser with the sintering temperature increasing by 50 ℃, relative permittivity and dielectric loss also change a lot. When sintered at 1 100 ℃, r values peak can reach 205.40 at a frequency of 100 k Hz, the minimum dielectric losses of four different frequencies make no difference, all close to 0.027. The values of Ea range from 0.52 to 0.68 e V. The dielectric properties of the sample sintered at 1 100 ℃ are relatively better than those of the other samples by analyzing the relationship of the grain, the internal stresses, the homogeneity and the dielectric properties. SEM can better explain the results of the dielectric spectrum at different sintering temperatures. The results show that Bi_4Ti_3O_(12) ceramics are a kind of dielectrics. Thus, Bi_4Ti_3O_(12) can be used in high-temperature capacitors and microwave ceramics.展开更多
The levels of dopamine(DA)in living organisms have strong effects on many biological processes and diseases,such as Parkinson's disease and Alzheimer's disease.Therefore,it has great significance for sensitive...The levels of dopamine(DA)in living organisms have strong effects on many biological processes and diseases,such as Parkinson's disease and Alzheimer's disease.Therefore,it has great significance for sensitive and selective detection of DA.Herein,the AuPd@Fe_(2)O_(3) nanoparticles-based electrochemical(EC)sensor(AuPd@Fe_(2)O_(3) NPs/GCE)is developed for chronoamperometric detection of DA with high sensitivity and good anti-interference ability through simple immobilization of AuPd@Fe_(2)O_(3) nanoparticles on glassy carbon electrode(GCE)by Nafion.Under the application of oxidation potential,the AuPd@Fe_(2)O_(3) NPs/GCE exhibits good electrocatalytic activity toward DA,which enables to linearly detect DA in the range of 10 nM–831.61μM(R^(2)=0.9983).The AuPd@Fe_(2)O_(3) NPs/GCE also shows good selectivity and reproducibility for the detection of DA.Furthermore,the practicability of AuPd@Fe_(2)O_(3) NPs/GCE has been demonstrated by detection of DA in dopamine hydrochloride injection and human serum.展开更多
基金This study is funded by Air Pollution Special Project of the Ministry of Science and Technology(Grant No.2017YFCOZ10006)the National Natural Science Foundation of China(Grant No.41975173)。
文摘This study uses the WRF-Chem model combined with the empirical kinetic modeling method(EKMA curve)to study the compound pollution event in Beijing that happened in 13−23 May 2017.Sensitivity tests are conducted to analyze ozone sensitivity to its precursors,and to develop emission reduction measures.The results suggest that the model can accurately simulate the compound pollution process of photochemistry and haze.When VOCs and NOx were reduced by the same proportion,the effect of O_(3)reduction at peak time was more obvious,and the effect during daytime was more significant than at night.The degree of change in ozone was peak time>daytime average.When reducing or increasing the ratio of precursors by 25%at the same time,the effect of reducing 25%VOCs on the average ozone concentration reduction was most significant.The degree of change in ozone decreased with increasing altitude,the location of the ozone maximum change shifted westward,and its range narrowed.As the altitude increases,the VOCs-limited zone decreases,VOCs sensitivity decreases,NOx sensitivity increases.The controlled area changed from near-surface VOCs-limited to high-altitude NOx-limited.Upon examining the EKMA curve,we have found that suburban and urban are sensitive to VOCs.The sensitivity tests indicate that when VOCs in suburban are reduced about 60%,the O_(3)-1h concentration could reach the standard,and when VOCs of the urban decreased by about 50%,the O_(3)-1h concentration could reach the standard.Thus,these findings could provide references for the control of compound air pollution in Beijing.
文摘The simultaneous investigation on the parameters affecting the flow of electrically conductive fluids such as volumetric radiation,heat absorption,heat generation,and magnetic field(MF)is very vital due to its existence in various sectors of industry and engineering.The present research focuses on mathematical modeling to simulate the cooling of a hot component through power-law(PL)nanofluid convection flow.The temperature reduction of the hot component inside a two-dimensional(2D)inclined chamber with two different cold wall shapes is evaluated.The formulation of the problem is derived with the lattice Boltzmann method(LBM)by code writing via the FORTRAN language.The variables such as the radiation parameter(0–1),the Hartmann number(0–75),the heat absorption/generation coefficient(−5–5),the fluid behavioral index(0.8–1.2),the Rayleigh number(103–105),the imposed MF angle(0°–90°),the chamber inclination angle(−90°–90°),and the cavity cold wall shape(smooth and curved)are investigated.The findings indicate that the presence of radiation increases the mean Nusselt number value for the shear-thickening,Newtonian,and shear thinning fluids by about 6.2%,4%,and 2%,respectively.In most cases,the presence of nanoparticles improves the heat transfer(HT)rate,especially in the cases where thermal conduction dominates convection.There is the lowest cooling performance index and MF effect for the cavity placed at an angle of 90°.The application in the design of electronic coolers and solar collectors is one of the practical cases of this numerical research.
基金Funded by Hubei Provincial Department of Education(No.D20161006)
文摘Various lead-free ceramics have been investigated in search for new high-temperature dielectrics. In particular, Bi_4Ti_3O_(12) is a type of ferroelectric ceramics, which is supposed to replace leadcontaining ceramics for its outstanding dielectric properties in the near future. Ferroelectric ceramics of Bi_4Ti_3O_(12) made by conventional mixed oxide route have been studied by impedance spectroscopy in a wide range of temperature. X-ray diffraction patterns show that Bi_4Ti_3O_(12) ceramics are a single-phase of ferroelectric Bi-layered perovskite structure whether it is calcined at 800 ℃ or after sintering production. This study focused on the effect of the grain size on the electric properties of BIT ceramics. The BIT ceramics with different grain sizes were prepared at different sintering temperatures. Grain becomes coarser with the sintering temperature increasing by 50 ℃, relative permittivity and dielectric loss also change a lot. When sintered at 1 100 ℃, r values peak can reach 205.40 at a frequency of 100 k Hz, the minimum dielectric losses of four different frequencies make no difference, all close to 0.027. The values of Ea range from 0.52 to 0.68 e V. The dielectric properties of the sample sintered at 1 100 ℃ are relatively better than those of the other samples by analyzing the relationship of the grain, the internal stresses, the homogeneity and the dielectric properties. SEM can better explain the results of the dielectric spectrum at different sintering temperatures. The results show that Bi_4Ti_3O_(12) ceramics are a kind of dielectrics. Thus, Bi_4Ti_3O_(12) can be used in high-temperature capacitors and microwave ceramics.
基金National Natural Science Foundation of China(Grant no.21974133).
文摘The levels of dopamine(DA)in living organisms have strong effects on many biological processes and diseases,such as Parkinson's disease and Alzheimer's disease.Therefore,it has great significance for sensitive and selective detection of DA.Herein,the AuPd@Fe_(2)O_(3) nanoparticles-based electrochemical(EC)sensor(AuPd@Fe_(2)O_(3) NPs/GCE)is developed for chronoamperometric detection of DA with high sensitivity and good anti-interference ability through simple immobilization of AuPd@Fe_(2)O_(3) nanoparticles on glassy carbon electrode(GCE)by Nafion.Under the application of oxidation potential,the AuPd@Fe_(2)O_(3) NPs/GCE exhibits good electrocatalytic activity toward DA,which enables to linearly detect DA in the range of 10 nM–831.61μM(R^(2)=0.9983).The AuPd@Fe_(2)O_(3) NPs/GCE also shows good selectivity and reproducibility for the detection of DA.Furthermore,the practicability of AuPd@Fe_(2)O_(3) NPs/GCE has been demonstrated by detection of DA in dopamine hydrochloride injection and human serum.