The abandonment of date palm grove of the former Al-Ahsa Oasis in the eastern region of Saudi Arabia has resulted in the conversion of delicate agricultural area into urban area.The current state of the oasis is influ...The abandonment of date palm grove of the former Al-Ahsa Oasis in the eastern region of Saudi Arabia has resulted in the conversion of delicate agricultural area into urban area.The current state of the oasis is influenced by both expansion and degradation factors.Therefore,it is important to study the spatiotemporal variation of vegetation cover for the sustainable management of oasis resources.This study used Landsat satellite images in 1987,2002,and 2021 to monitor the spatiotemporal variation of vegetation cover in the Al-Ahsa Oasis,applied multi-temporal Normalized Difference Vegetation Index(NDVI)data spanning from 1987 to 2021 to assess environmental and spatiotemporal variations that have occurred in the Al-Ahsa Oasis,and investigated the factors influencing these variation.This study reveals that there is a significant improvement in the ecological environment of the oasis during 1987–2021,with increase of NDVI values being higher than 0.10.In 2021,the highest NDVI value is generally above 0.70,while the lowest value remains largely unchanged.However,there is a remarkable increase in NDVI values between 0.20 and 0.30.The area of low NDVI values(0.00–0.20)has remained almost stable,but the region with high NDVI values(above 0.70)expands during 1987–2021.Furthermore,this study finds that in 1987–2002,the increase of vegetation cover is most notable in the northern region of the study area,whereas from 2002 to 2021,the increase of vegetation cover is mainly concentrated in the northern and southern regions of the study area.From 1987 to 2021,NDVI values exhibit the most pronounced variation,with a significant increase in the“green”zone(characterized by NDVI values exceeding 0.40),indicating a substantial enhancement in the ecological environment of the oasis.The NDVI classification is validated through 50 ground validation points in the study area,demonstrating a mean accuracy of 92.00%in the detection of vegetation cover.In general,both the user’s and producer’s accuracies of NDVI classification are extremely high in 1987,2002,and 2021.Finally,this study suggests that environmental authorities should strengthen their overall forestry project arrangements to combat sand encroachment and enhance the ecological environment of the Al-Ahsa Oasis.展开更多
Schirmacher Oasis and Larsemann Hills areas represent two different periglacial environments of East Antarctica. Schirmacher Oasis is characterized by a vast stretch of ice-shelf in the north and East Antarctic Ice Sh...Schirmacher Oasis and Larsemann Hills areas represent two different periglacial environments of East Antarctica. Schirmacher Oasis is characterized by a vast stretch of ice-shelf in the north and East Antarctic Ice Sheet(EAIS) to its south. Whereas, in Larsemann Hills area the northern and north-western boundary is coastal area and EAIS in the southern part,exhibiting polar lowland between the marine and continental glacial ecosystems. Physico-chemical parameters of water samples from different lakes of both of these two distinct locations are quite contrasting and have indicated influence of lithology, weathering, evaporation and precipitation. The lake water chemistry in Larsemann Hills area is mainly governed by the lithology of the area while Schirmacher lakes exhibit influence of precipitation and rock composition. All major ions of lake waters indicate balanced ionic concentrations. The atmospheric precipitation has significantly modified the ionic distributions in the lakes and channels. Carbonation is the main proton supplying geochemical reactions involved in the rock weathering and this is an important mechanism which controls the hydrochemistry. The lake water hydrochemistry differs widely not only between two distant periglacial zones but also within a short distance of a single periglacial entity, indicating influence of territorial climate over hydrochemistry.展开更多
The Minqin oasis is surrounded on three sides by the Tengger Desert and the Badanjilin Desert, and it prevents these two deserts from converging. However, in recent years it has become the worst ecological environment...The Minqin oasis is surrounded on three sides by the Tengger Desert and the Badanjilin Desert, and it prevents these two deserts from converging. However, in recent years it has become the worst ecological environment in the Lake area due to deficient water resources, continual declines in the groundwater level and quality (increasing mineralization and salination), which are causing in- creasing desertification. In this study, Landsat Thematic Mapper (TM) remote images from 1992, 1998, 2002, and 2006 of the Lake area of the Minqin oasis are interpreted to analyze the desertification evolution. A combination of an ArcObjects module and a cellular automata model is used to build a model simulating the desertification dynamics; the forecasting accuracy of this model is shown to reach up to 90%. The desertification situation in 2012 is forecasted by this model, and the results showed that, from 2006 to 2012, the green land area will be reduced by 999.92 hm2 (l.59 percent of the total oasis area), the desertification land area will be reduced by 3,000.68 hrn2 (4.78 percent of the total oasis area), and sand land area will increase by 4,000.6 hm2 (6.37 per- cent of the total oasis area). The sand land is predicted to become more widespread, and more than 18% sand land will be distrib- uted in the center of green land in the Lake area. In other words, more and more abandoned green land (mined farm land) will be transformed into sand land, and this will intensify the desertification.展开更多
This study investigates the glacial lake outburst flood(GLOF)hazards in the Tsambagarav mountain range in Western Mongolia,focusing on the Khukhnuruu Valley and its interconnected proglacial lakes.Over the last 30 yea...This study investigates the glacial lake outburst flood(GLOF)hazards in the Tsambagarav mountain range in Western Mongolia,focusing on the Khukhnuruu Valley and its interconnected proglacial lakes.Over the last 30 years,significant glacier retreats,driven by rising temperatures and changing precipitation patterns,have led to the formation and expansion of several proglacial lakes.Fieldwork combined with satellite data and meteorological analysis was used to assess the dynamics of glacier and lake area changes,with particular focus on the flood events of July 2021.The research reveals a substantial reduction in glacier area,particularly in the Khukhnuruu E complex,where glacier area decreased by 19.3%.The study highlights the influence of increasing temperatures and summer precipitation,which have accelerated ice melt,contributing to the expansion and eventual breaching of lakes.Additionally,lake area changes were influenced by the steepness of the terrain,with steeper slopes exacerbating peak discharge during floods.Of the studied seven lakes(Lake 1 to Lake 7),Lake 1 experienced the most dramatic reduction,with a decrease in area by 73.51%and volume by 84.84%,followed by Lake 7.This study underscores the region's vulnerability to climate-induced hazards and stresses the need for a comprehensive early warning system and disaster preparedness measures to mitigate future risks.展开更多
The problem of access to quality water is a major challenge, as it has a major impact on the socio-economic conditions of people in developing countries. The water from the islands of Lake Fitri is one of the main sou...The problem of access to quality water is a major challenge, as it has a major impact on the socio-economic conditions of people in developing countries. The water from the islands of Lake Fitri is one of the main sources of drinking water for the population. The aim of this study is to characterise and assess the quality of the water and sediment from the islands (Moudou and Birguime) of Lake Fitri, and to confirm the strains isolated using the PCR method. A total of fifty (50) samples of water and fifty (50) sediments from the islands of Lake Fitri were analyzed. Standard methods of microbiological and biochemical analysis of water and sediments were used. Isolated Enterobacteriaceae strains were characterized by API 20 E and API Staph galleries and Salmonella was confirmed by PCR method. Antibiotic resistance was determined using a technique recommended by the antibiogram committee of the French microbiology society (CA-SFM, 2019). The microbiological results for the water showed an abundance of total aerobic mesophilic flora (TAMF) (4.31 × 106 ± 8.05 × 105 and 5.29 × 106 ± 2.55 × 105) on the Birguime and Moudou islands successively. The microbiological results for the sediment from Birguime and Moudou islands showed an abundance of thermotolerant coliforms (E. coli) (2.05 × 105 ± 5.43 × 104 and 2.27 × 105 ± 3.49 × 104) alternately. The results obtained after incubation of the biochemical tests by the API 20E, API Staph gallery and their numerical profile proposed by the Api software confirmed the contamination. The antibiogram results showed the emergence of certain resistances to the antibiotics Tobramycin, Flucytosine, Amikacin and Teicoplani. The PCR results for Salmonella spp strains were confirmed. As a result, strict monitoring of the water on the various islands of Lake Fitri must be carried out throughout the annual cycle, by specialized personnel, to ensure proper bio-monitoring of these ecosystems.展开更多
Polycyclic aromatic hydrocarbons(PAHs)are ubiquitous environmental contaminants of growing concern due to their potential ecological and human health risks.This study presents a comprehensive assessment of PAHs contam...Polycyclic aromatic hydrocarbons(PAHs)are ubiquitous environmental contaminants of growing concern due to their potential ecological and human health risks.This study presents a comprehensive assessment of PAHs contamination in the surface sediments of Burullus Lake,a vital and second largest delta lake in Egypt.The aim was to evaluate the eco-toxicity and potential health risks associated with the presence of these compounds.Surface seven sediment samples were collected from various drains in the southern part of Burullus Lake.Soxhlet extraction method was employed to extract PAHs(16PAHs)from the sediment sample.Analytically,target compounds were located using HPLC.The results showed that samples contained PAHs levels ranging from 0.038×10^(-6)to 0.459×10^(-6),which is considered heavily polluted by the European standard for PAHs pollution.Additionally,there was no apparent source of PAHs in the ElKhashah drain or the Brinbal Canal,as HPLC found none of the compounds.The most prevalent compound in sediment samples along the study area was fluoranthene.The diagnostic indices in the present study indicated that the hydrocarbons in the region originated from pyrolytic and man-made sources along the drains of Burullus Lake.The principal component analysis(PCA)and diagnostic ratios revealed that coal combustion and pyrolytic sources were responsible for the PAHs contamination in the surface sediments.The non-carcinogenic risk(HI),which is the product of the HQs for the adult and child populations,respectively,was calculated.HI values under 1,therefore,demonstrated that they had no carcinogenic effects on human health.TEQs and MEQs in the sediments of Burullus Lake do not have a cancer-causing impact on people.For the safety of nearby wildlife,aquatic life,and people,all activities that raise petroleum hydrocarbon levels in Burullus Lake must be adequately regulated and controlled.According to the ecological risk assessment,there is little chance that PAHs will be found in the sediments of Burullus Lake.This study underscores the urgent need for effective pollution control measures and regular monitoring of PAHs levels in Burullus Lake sediments to protect the aquatic ecosystem and public health.It also highlights the importance of considering eco-toxicity and human health risks in integrated risk assessments of PAHs-contaminated environments.展开更多
The availability of lithium resources is of great significance for the development of modern technologies,as well as for civil and military industries.The Qinghai-Tibet Plateau is a region known for its abundance of l...The availability of lithium resources is of great significance for the development of modern technologies,as well as for civil and military industries.The Qinghai-Tibet Plateau is a region known for its abundance of lithium-rich salt lakes.However,the specific origin of lithium in these lakes is still unknown,which hinders the advancement of the lithium resource business in this region.To research this issue,this study involved the collection of 20 samples from Lakkor Co Salt Lake on Qinghai-Tibet Plateau,encompassing samples of surface brine,cold springs,fresh lakes,and recharge rivers.The composition of anions and cations in these samples was determined.Furthermore,the analysis extensivelyutilizedthePiperthree-linediagram,Gibbs model,and ion proportion coefficient.The findings of this study indicate that as the moves from the recharge water system to salt lake,there is a transition in water type from strong carbonate to moderate carbonate and weak carbonate,as well as Na sulfate.This research based on a similar source of both lithium and boron,utilized ion correlation analysis and boron isotope study in the Lakkor Co area,and analyzed the source and transporting process of lithium.The main origin of lithium in Lakkor Co is the dissolution of lithiumrich rocks,recharge water systems,and deep hydrothermal fluids.These findings are highly significant in enhancing the foundational data of lithium-rich brine resources in the Qinghai-Tibet Plateau and are beneficial for assessing the future development of such deposits.展开更多
Glacier inventories serve as critical baseline data for understanding the impacts of climate change on glaciers.The present study maps the outlines of glaciers in the Chandra-Bhaga Basin(western Himalaya)for the years...Glacier inventories serve as critical baseline data for understanding the impacts of climate change on glaciers.The present study maps the outlines of glaciers in the Chandra-Bhaga Basin(western Himalaya)for the years 1993,2000,2010,and 2019 using Landsat Thematic Mapper(TM),Enhanced Thematic Mapper(ETM),and Operational Land Imager(OLI)datasets.A total of 251 glaciers,each having an area above 0.5 km^(2),were identified,which include 216 clean-ice and 35 debris-covered glaciers.Area changes are estimated for three periods:1993-2000,2000-2010,and 2010-2019.The total glacierized area was 996±62 km^(2) in 1993,which decreased to 973±70 km^(2) in 2019.The mean rate of glacier area loss was higher in the recent decade(2010-2019),at 0.036 km^(2),compared to previous decades(0.029 km^(2) in 2000-2010 and 0.025 km^(2) in 1993-2000).Supraglacial debris cover changes are also mapped over the period of 1993 and 2019.It is found that the supraglacial debris cover increased by 14.12±2.54 km^(2)(15.2%)during 1993-2019.Extensive field surveys on Chhota Shigri,Panchi II,Patsio,Hamtah,Mulkila,and Yoche Lungpa glaciers were carried out to validate the glacier outlines and supraglacial debris cover estimated using satellite datasets.Controls of various morphological parameters on retreat were also analyzed.It is observed that small,clean ice,south oriented glaciers,and glaciers with proglacial lakes are losing area at faster rates than other glaciers in the basin.展开更多
Volcanic lakes in the Kuril-Kamchatka region are difficult to access,and for this reason,they remain poorly studied,with only scattered and brief data available.The authors have conducted a study of 10 lake basins usi...Volcanic lakes in the Kuril-Kamchatka region are difficult to access,and for this reason,they remain poorly studied,with only scattered and brief data available.The authors have conducted a study of 10 lake basins using modern digital echolocation survey techniques and have also compiled and summarized published data for 15 lakes in the region,calculating their main morphometric characteristics.It has been established that many caldera lake basins are modified by young explosive funnels,extrusive or effusive domes,and exhibit traces of hydrothermal activity.While lakes of the same genetic type in the Kuril-Kamchatka region are similar in depth and depression forms,the group of caldera lakes shows less homogeneity across all morphometric indicators.It was found that the absolute heights of the reservoirs on Kamchatka Peninsula are generally greater than those on the Kuril Islands,as is often the case with the size of their basins.The volcanic lakes under study can rapidly change their volume and shape under the influence of endogenous processes.For the first time for this region,on the base of repeated observations,underwater extrusive dome rate growth and the approximate rates of 2 lake level changes were calculated.Repeated observations of lakes in the Ksudach calderas(Kamchatka)and on Simushir Island indicate approximate rates of level changes:a decrease ranging within 0.5-0.6 m per year(over a 27-year observation interval)and an increase reaching up to 0.26 m per year(over a 48-year interval).The growth rate of the underwater extrusive dome in Lake Shtyubel has averaged 1-1.6 m per year over the past 25 years.This analysis has facilitated the first generalization regarding the morphology and developmental features of crater and caldera lakes in the Kuril-Kamchatka region of Russia,representing an important step in their study.The results obtained will provide a solid foundation for subsequent research in this region and may be of interest to researchers studying other volcanic lakes.展开更多
In recent years, lakes on the Qinghai-Tibet Plateau have become more responsive to climate change. In September 2011, Zonag Lake in Hoh Xil experienced sudden drainage, the water eventually flowed into Yanhu Lake, whi...In recent years, lakes on the Qinghai-Tibet Plateau have become more responsive to climate change. In September 2011, Zonag Lake in Hoh Xil experienced sudden drainage, the water eventually flowed into Yanhu Lake, which caused Yanhu Lake to continue to expand. The potential collapse of Yanhu Lake could directly threaten the operational safety of the adjacent Qinghai-Tibet Highway, Qinghai-Tibet Railway. To explore the implications of expanding lakes on the surrounding permafrost, we selected Hoh Xil Yanhu Lake on the Qinghai-Tibet Plateau to study the effect of lake expansion on permafrost degradation. The permafrost degradation in the Yanhu Lake basin from October 2017 to December 2022 was inverted using Sentinel-1 satellite image data and small baseline subset interferometry synthetic aperture radar(SBAS-In SAR) technology. Additionally, permafrost degradation from February 2007 and February 2010 was analyzed using advanced land observing satellite phased array-type L-band synthetic aperture radar(ALOS PALSAR) satellite images and differential interferometric synthetic aperture radar(D-In SAR) technique. The results showed that the permafrost around Yanhu Lake experienced accelerated degradation. Prior to the expansion of Yanhu Lake, the average annual deformation rate along the line of sight(LOS) direction was 6.7 mm/yr. After the expansion, the rate increased to 20.9 mm/yr. The integration of spatial-temporal distribution maps of surface subsidence, Wudaoliang borehole geothermal data, meteorological data, Yanhu Lake surface area changes, and water level changes supports the assertion that the intensified permafrost degradation could be attributed to lake expansion rather than the rising air temperature. Furthermore, permafrost degradation around Yanhu Lake could impact vital infrastructure such as the adjacent Qinghai-Tibet Highway and Qinghai-Tibet Railway.展开更多
The salinization process resulted in agricultural damage in the Hula Valley and water quality deterioration in Lake Kinneret. Therefore, salinization-desalinization (SDS) processes have been emphasized in the last two...The salinization process resulted in agricultural damage in the Hula Valley and water quality deterioration in Lake Kinneret. Therefore, salinization-desalinization (SDS) processes have been emphasized in the last two decades. Global and regional extreme climatological events and water scarcity strengthen the link between Hula Valley and Lake Kinneret management design. A bond between optimizing Hula agricultural maintenance and Kinneret water quality protection is conclusively suggested. Saline contribution originated from the southern Hula Valley region to the underground and surface water is higher than from the northern organic soil. The impact of eastern water Intrusion from the Golan Heights as surface waters, river discharge and underground seepage into the Hula Valley represent north-south gradient enhancement. Salinized surface water contribution from the Hula Valley to Lake Kinneret is unwanted because presently Kinneret desalinization management policy is critically required. The present salinization of surface and underground water in the Hula Valley indicates the upper limit suitable for agricultural crop optimization and the decline of salinity is crucial. Enhancement of the portion of Jordan water within the total balance in the valley is beneficial for Hula agricultural crops but serves as a disadvantage to Kinneret desalinization implementation. Therefore, the enhancement of lake water exchange is recommended.展开更多
The ice phenology of alpine lakes on the Tibetan Plateau(TP)is a rapid and direct responder to climate changes,and the variations in lake ice exhibit high temporal frequency characteristics.MODIS and passive microwave...The ice phenology of alpine lakes on the Tibetan Plateau(TP)is a rapid and direct responder to climate changes,and the variations in lake ice exhibit high temporal frequency characteristics.MODIS and passive microwave data are widely used to monitor lake ice changes with high temporal resolution.However,the low spatial resolutions make it difficult to effectively quantify the freeze-melt dynamics of lakes.This work used Sentinel-1 synthetic aperture radar(SAR)data to derive high-resolution ice maps(about 6 days),then with the aid of Sentinel-2 optical images to quantify freeze-melt processes in three typical lakes on the TP(e.g.Selin Co,Ayakekumu Lake,and Nam Co).The results showed that three lakes had an average annual ice period of 125-157 days and a complete ice cover period of 72-115 days,from 2018 to 2022.They exhibit different ice phenology patterns.Nam Co is characterized by repeated episodes of freezing,melting,and refreezing,resulting in a prolonged freeze-up period.Meanwhile,the break-up period of Nam Co lasts for a longer duration(about 19 days),and the break-up exhibits a smooth process.Similarly,Ayakekumu Lake showed more significant inter-annual fluctuations in the freeze-up period,with deviations of up to 28 days observed among different years.Compared to the other two lakes,Selin Co experienced a relatively short freeze-up and break-up period.In short,Sentinel-1 SAR data can effectively monitor the weekly and seasonal variations in lake ice on the TP.Particularly,this data facilitates quantification of the freeze-melt dynamics.展开更多
Extreme hydrological events such as droughts and floods have been increasingly influenced by abnormal atmospheric disturbances caused by human activity and global warming.The Dongting Lake Basin(DLB)has experienced ch...Extreme hydrological events such as droughts and floods have been increasingly influenced by abnormal atmospheric disturbances caused by human activity and global warming.The Dongting Lake Basin(DLB)has experienced challenging circumstances over the past 20 years due to complex climatic variations,leading to extreme flooding and drought.This study aims to investigate the spatiotemporal variation in terrestrial water storage anomalies(TWSA)over the DLB using data from the GRACE/GRACE-FO and GLDAS spanning the latest two decades.A significant decline trend in TWSA is unveiled from July 2019 to May 2023,with the rate of change determined as-1.94 cm/year and-1.99 cm/year based on the GRACE/GRACE-FO and GLDAS,respectively.The GRACE-Drought Severity Index(DSI)is employed to identify and evaluate the severity and spatiotemporal evolution of the 2022 drought event in the DLB.The results accurately capture the drought event,which began in July 2022 and continued until March 2023,with the most severe conditions occurring in October 2022,when the GRACE-DSI value stood at-2.06 and the TWSA decreased by 15.24 cm and 33.51 cm relative to the same month in 2021 and 2020,respectively.Additionally,the daily water level variation at the Chenglingji hydrological gauging station in 2022 broke previous records,reaching a minimum of only 19 m.Comparing the 2022 drought event with the drought events in 2006 and 2011,the impact of drought on vegetation growth conditions was relatively small,but there was still significant vegetation degradation across the DLB.展开更多
Extreme droughts are increasing in frequency and severity globally as a result of climate change.Developing understanding of species’responses to drought is crucial for their conservation,especially in regions experi...Extreme droughts are increasing in frequency and severity globally as a result of climate change.Developing understanding of species’responses to drought is crucial for their conservation,especially in regions experi-encing increased aridity.Although numerous studies have investigated birds’responses to drought,the emphasis has primarily been on landbirds.Drought can significantly alter the wetland environments that waterbirds inhabit,but the response of waterbirds to drought remains understudied.In this study,we surveyed the distri-bution and behavior of Oriental Storks(Ciconia boyciana)in Poyang Lake,which is the largest freshwater lake in China.Results indicate that drought-induced catchment areas at the lowest water level limited the total popu-lation size of Oriental Storks in the sub-lakes.Sub-lakes with large catchment areas at the lowest water level demonstrated a capacity to support a larger population of wintering Oriental Storks.Over time,Oriental Storks exhibited a gradual concentration in Changhu Lake,characterized by larger catchments,after resource depletion in sub-lakes with smaller catchments.Additionally,the duration of Oriental Storks’vigilance and moving be-haviors decreased significantly compared with that observed before the drought.After the drought,Oriental Storks increased their foraging efforts,as evidenced by increased presence in deeper water and reaching their heads and necks into deeper water to forage,higher search rates,but lower foraging rates.In accordance with area-restricted search theory,reductions in habitat quality resulting from drought,including extensive fish die-offs,forced Oriental Storks to increase their foraging efforts.Sustaining a specific water area in sub-lakes during droughts can preserve resource availability,which is crucial for the conservation of Oriental Storks.Imple-menting measures such as water level control and micro-modification of lake bottoms in sub-lakes might mitigate the impact of drought on the piscivorous Oriental Storks.展开更多
For migratory waterbirds,the quality of wintering habitat is related to spring migration and successful breeding in the next year.The availability of food resources in the habitat is critical and varies within water l...For migratory waterbirds,the quality of wintering habitat is related to spring migration and successful breeding in the next year.The availability of food resources in the habitat is critical and varies within water levels.Although the water-level fluctuations in Poyang Lake have been extremely variable interannually in recent years,the wintering waterbird populations have remained relatively stable.Hence,the mechanism of maintaining the stability is worth exploring.This study aimed to compare the distribution of vegetation and herbivorous wa-terbirds in 2015-2016 and 2016-2017,focusing on three shallow sub-lakes and one main lake are.The results showed that the emergence of tubers and the growth of Carex spp.provided a continuous food supply and habitat for wintering waterbirds with a gradual decline in the water level.Shallow sub-lakes supported almost all of the tuber-eating waterbirds(1.42-1.62×10^(5))and most geese(1.34-1.53×10^(6)).However,the main lake area,covered with Persicaria hydropiper,did not provide adequate and accessible food.This resulted in almost no distribution of tuber-eating waterbirds,with only a few geese congregating in early winter.Our results demonstrated that the shallow sub-lakes under human control provided a different environment from the main lake and are key to sustaining the successful wintering of hundreds of thousands of migratory waterbirds in Poyang Lake.Therefore,we recommend refining the anthropogenic management of the shallow sub-lakes to regulate the water level to ensure the carrying capacity of Poyang Lake.展开更多
Lake is an important part of the natural ecosystem, and its morphological characteristics reflect the capacity of lake regulation and storage, the strength of material migration, and the characteristics of shoreline d...Lake is an important part of the natural ecosystem, and its morphological characteristics reflect the capacity of lake regulation and storage, the strength of material migration, and the characteristics of shoreline development. In most existing studies, remote sensing images are used to quantify the morphological characteristics of lakes. However, the extraction accuracy of lake water is greatly affected by cloud cover and vegetation cover, and the inversion accuracy of lake elevation data is poor, which cannot accurately describe the response relationship of lake landscape morphology with water level change. Therefore, this paper takes Tonle Sap Lake as the research object, which is the largest natural freshwater lake in Southeast Asia. DEM is constructed based on high-resolution measured topographic data, and morphological indicators such as lake area, lake shoreline length, perimeter area ratio, longest axis length, maximum width, shoreline development index, lake shape complexity, compactness ratio and form ratio are adopted to researching the evolution law of high water overflows and low water outbursts quantitatively, and clarifying the variation characteristics of landscape morphology with water level gradient in Tonle Sap Lake. The research results have important theoretical significance for the scientific utilization of Tonle Sap Lake water resources and the protection of the lake ecosystem.展开更多
Environmental DNA(eDNA)has been used as an important tool for fish diversity analysis,which can greatly solve the problems in traditional survey methodology.However,little work has been done on the actual monitoring a...Environmental DNA(eDNA)has been used as an important tool for fish diversity analysis,which can greatly solve the problems in traditional survey methodology.However,little work has been done on the actual monitoring accuracy of eDNA.In this study,we analyzed the current status of fish resources in Erhai Lake in Yunnan,SW China,by dividing the lake into three sectors according to habitat differences,and compared the results of eDNA and traditional capture methods to investigate the shortcomings of the current analysis of eDNA results.A total of 27 fish species were detected by eDNA and traditional capture methods,including 20 and 19 fish species,respectively,and additional differences in fish composition between the two methods.The alpha diversity showed higher fish abundance and lower fish diversity by eDNA method compared to the traditional capture method,demonstrating that eDNA was not superior for use in fish diversity analysis.Fish community similarity analysis showed that community differences were generally significant for eDNA(P<0.05).RDA analysis indicated that environmental factors did not significantly affect fish communities monitored by the eDNA method.However,water temperature,aquatic plants,and water depth had significant(P<0.05)effects on fish communities in the traditional capture method,suggesting that eDNA results are insensitive to the effects of environmental factors.Our results illustrate the effectiveness of eDNA in fish identification and the issues in quantification compared to traditional capture methods.Therefore,combining eDNA with traditional methods is a more effective method for analyzing eDNA metabarcoding,following which the protocols of both quantitative methods can be designed to explore the regularity of eDNA quantification.展开更多
Over the last three decades,more than half of the world's large lakes and wetlands have experienced significant shrinkage,primarily due to climate change and extensive water consumption for agriculture and other h...Over the last three decades,more than half of the world's large lakes and wetlands have experienced significant shrinkage,primarily due to climate change and extensive water consumption for agriculture and other human needs.The desiccation of lakes leads to severe environmental,economic,and social repercussions.Urmia Lake,located in northwestern Iran and representing a vital natural ecosystem,has experienced a volume reduction of over 90.0%.Our research evaluated diverse water management strategies within the Urmia Lake basin and prospects of inter-basin water transfers.This study focused on strategies to safeguard the environmental water rights of the Urmia Lake by utilizing the modeling and simulating(MODSIM)model.The model simulated changes in the lake's water volume under various scenarios.These included diverting water from incoming rivers,cutting agricultural water use by 40.0%,releasing dam water in non-agricultural seasons,treated wastewater utilization,and inter-basin transfers.Analytical hierarchy process(AHP)was utilized to analyze the simulation results.Expert opinions with AHP analysis,acted as a multi-criteria decision-making tool to evaluate the simulation and determine the optimal water supply source priority for the Urmia Lake.Our findings underscore the critical importance of reducing agricultural water consumption as the foremost step in preserving the lake.Following this,inter-basin water transfers are suggested,with a detailed consideration of the inherent challenges and limitations faced by the source watersheds.It is imperative to conduct assessments on the impacts of these transfers on the downstream users and the potential environmental risks,advocating for a diplomatic and cooperative approach with adjacent country.This study also aims to forecast the volumes of water that can be transferred under different climatic conditions—drought,normal,and wet years—to inform strategic water management planning for the Urmia Lake.According to our projection,implementing the strategic scenarios outlined could significantly augment the lake's level and volume,potentially by 3.57×109–9.38×109 m3 over the coming 10 a and 3.57×109–10.70×109 m3 in the subsequent 15 a.展开更多
Based on 2022 and 2023 hydrometric data and satellite images (Sentinel 2022, SPOT 2010), this study aims to present the Nokoué Lake and its channels’ re-cent hydromorphological characteristics. Integrating flow,...Based on 2022 and 2023 hydrometric data and satellite images (Sentinel 2022, SPOT 2010), this study aims to present the Nokoué Lake and its channels’ re-cent hydromorphological characteristics. Integrating flow, tributary morphology, and topography data determined specific power values along the axes studied. The values obtained range from 2.69 to 12.92 W/m2 for Ouémé River and 2.46 to 10.99 W/m2 for Sô River. The resulting water erosion on banks and bottoms is of linear, areolar, or gully and claw types. Lake bathymetry varies from -0.5 to -2.6 m (low flow period) and -1 to -4 m;in the Ouémé, Sô, and Totchè rivers, it varies from -5 m to -7 m, reaching -10 m at the Cotonou channel entrance (flood period). Bathymetric profiles reveal varied “U”, “V” and “Intermediate” bottom morphologies, influenced by erosion/sedimentation processes and human activities. The flow facies identified are lentic in the northern tributaries and lotic in the Cotonou and Totchè canals. Spatial analysis identified nine (09) thematic classes. In 2022, the surface area of the water body has increased from 274 km2 at low water to 280 km2 at high water, whereas in 2010 (a recent year of exceptional flooding), the surface area was 270 km2 at low water and 277 km2 at high water. Significant changes in land use are observed between 2010 and 2022. The floodplain area decreased slightly, from 421 km2 in 2010 (year of exceptional flooding) to 419 km2 in 2022. The evolution of land use shows a progressive expansion of the urban environment to the detriment of the natural environment. In the medium to long term, this trend could threaten the hydromorphological balance and even the existence of this important lagoon ecosystem.展开更多
文摘The abandonment of date palm grove of the former Al-Ahsa Oasis in the eastern region of Saudi Arabia has resulted in the conversion of delicate agricultural area into urban area.The current state of the oasis is influenced by both expansion and degradation factors.Therefore,it is important to study the spatiotemporal variation of vegetation cover for the sustainable management of oasis resources.This study used Landsat satellite images in 1987,2002,and 2021 to monitor the spatiotemporal variation of vegetation cover in the Al-Ahsa Oasis,applied multi-temporal Normalized Difference Vegetation Index(NDVI)data spanning from 1987 to 2021 to assess environmental and spatiotemporal variations that have occurred in the Al-Ahsa Oasis,and investigated the factors influencing these variation.This study reveals that there is a significant improvement in the ecological environment of the oasis during 1987–2021,with increase of NDVI values being higher than 0.10.In 2021,the highest NDVI value is generally above 0.70,while the lowest value remains largely unchanged.However,there is a remarkable increase in NDVI values between 0.20 and 0.30.The area of low NDVI values(0.00–0.20)has remained almost stable,but the region with high NDVI values(above 0.70)expands during 1987–2021.Furthermore,this study finds that in 1987–2002,the increase of vegetation cover is most notable in the northern region of the study area,whereas from 2002 to 2021,the increase of vegetation cover is mainly concentrated in the northern and southern regions of the study area.From 1987 to 2021,NDVI values exhibit the most pronounced variation,with a significant increase in the“green”zone(characterized by NDVI values exceeding 0.40),indicating a substantial enhancement in the ecological environment of the oasis.The NDVI classification is validated through 50 ground validation points in the study area,demonstrating a mean accuracy of 92.00%in the detection of vegetation cover.In general,both the user’s and producer’s accuracies of NDVI classification are extremely high in 1987,2002,and 2021.Finally,this study suggests that environmental authorities should strengthen their overall forestry project arrangements to combat sand encroachment and enhance the ecological environment of the Al-Ahsa Oasis.
文摘Schirmacher Oasis and Larsemann Hills areas represent two different periglacial environments of East Antarctica. Schirmacher Oasis is characterized by a vast stretch of ice-shelf in the north and East Antarctic Ice Sheet(EAIS) to its south. Whereas, in Larsemann Hills area the northern and north-western boundary is coastal area and EAIS in the southern part,exhibiting polar lowland between the marine and continental glacial ecosystems. Physico-chemical parameters of water samples from different lakes of both of these two distinct locations are quite contrasting and have indicated influence of lithology, weathering, evaporation and precipitation. The lake water chemistry in Larsemann Hills area is mainly governed by the lithology of the area while Schirmacher lakes exhibit influence of precipitation and rock composition. All major ions of lake waters indicate balanced ionic concentrations. The atmospheric precipitation has significantly modified the ionic distributions in the lakes and channels. Carbonation is the main proton supplying geochemical reactions involved in the rock weathering and this is an important mechanism which controls the hydrochemistry. The lake water hydrochemistry differs widely not only between two distant periglacial zones but also within a short distance of a single periglacial entity, indicating influence of territorial climate over hydrochemistry.
基金supported by the National Natural Science Foundation of China (No. 40501073)the Fundamental Research Funds for the Central Universities (Nos. 11CX05015A and 10CX04047A)
文摘The Minqin oasis is surrounded on three sides by the Tengger Desert and the Badanjilin Desert, and it prevents these two deserts from converging. However, in recent years it has become the worst ecological environment in the Lake area due to deficient water resources, continual declines in the groundwater level and quality (increasing mineralization and salination), which are causing in- creasing desertification. In this study, Landsat Thematic Mapper (TM) remote images from 1992, 1998, 2002, and 2006 of the Lake area of the Minqin oasis are interpreted to analyze the desertification evolution. A combination of an ArcObjects module and a cellular automata model is used to build a model simulating the desertification dynamics; the forecasting accuracy of this model is shown to reach up to 90%. The desertification situation in 2012 is forecasted by this model, and the results showed that, from 2006 to 2012, the green land area will be reduced by 999.92 hm2 (l.59 percent of the total oasis area), the desertification land area will be reduced by 3,000.68 hrn2 (4.78 percent of the total oasis area), and sand land area will increase by 4,000.6 hm2 (6.37 per- cent of the total oasis area). The sand land is predicted to become more widespread, and more than 18% sand land will be distrib- uted in the center of green land in the Lake area. In other words, more and more abandoned green land (mined farm land) will be transformed into sand land, and this will intensify the desertification.
基金funded by the National University of Mongolia under grant agreement P2023(grant number P2023-4578)。
文摘This study investigates the glacial lake outburst flood(GLOF)hazards in the Tsambagarav mountain range in Western Mongolia,focusing on the Khukhnuruu Valley and its interconnected proglacial lakes.Over the last 30 years,significant glacier retreats,driven by rising temperatures and changing precipitation patterns,have led to the formation and expansion of several proglacial lakes.Fieldwork combined with satellite data and meteorological analysis was used to assess the dynamics of glacier and lake area changes,with particular focus on the flood events of July 2021.The research reveals a substantial reduction in glacier area,particularly in the Khukhnuruu E complex,where glacier area decreased by 19.3%.The study highlights the influence of increasing temperatures and summer precipitation,which have accelerated ice melt,contributing to the expansion and eventual breaching of lakes.Additionally,lake area changes were influenced by the steepness of the terrain,with steeper slopes exacerbating peak discharge during floods.Of the studied seven lakes(Lake 1 to Lake 7),Lake 1 experienced the most dramatic reduction,with a decrease in area by 73.51%and volume by 84.84%,followed by Lake 7.This study underscores the region's vulnerability to climate-induced hazards and stresses the need for a comprehensive early warning system and disaster preparedness measures to mitigate future risks.
文摘The problem of access to quality water is a major challenge, as it has a major impact on the socio-economic conditions of people in developing countries. The water from the islands of Lake Fitri is one of the main sources of drinking water for the population. The aim of this study is to characterise and assess the quality of the water and sediment from the islands (Moudou and Birguime) of Lake Fitri, and to confirm the strains isolated using the PCR method. A total of fifty (50) samples of water and fifty (50) sediments from the islands of Lake Fitri were analyzed. Standard methods of microbiological and biochemical analysis of water and sediments were used. Isolated Enterobacteriaceae strains were characterized by API 20 E and API Staph galleries and Salmonella was confirmed by PCR method. Antibiotic resistance was determined using a technique recommended by the antibiogram committee of the French microbiology society (CA-SFM, 2019). The microbiological results for the water showed an abundance of total aerobic mesophilic flora (TAMF) (4.31 × 106 ± 8.05 × 105 and 5.29 × 106 ± 2.55 × 105) on the Birguime and Moudou islands successively. The microbiological results for the sediment from Birguime and Moudou islands showed an abundance of thermotolerant coliforms (E. coli) (2.05 × 105 ± 5.43 × 104 and 2.27 × 105 ± 3.49 × 104) alternately. The results obtained after incubation of the biochemical tests by the API 20E, API Staph gallery and their numerical profile proposed by the Api software confirmed the contamination. The antibiogram results showed the emergence of certain resistances to the antibiotics Tobramycin, Flucytosine, Amikacin and Teicoplani. The PCR results for Salmonella spp strains were confirmed. As a result, strict monitoring of the water on the various islands of Lake Fitri must be carried out throughout the annual cycle, by specialized personnel, to ensure proper bio-monitoring of these ecosystems.
文摘Polycyclic aromatic hydrocarbons(PAHs)are ubiquitous environmental contaminants of growing concern due to their potential ecological and human health risks.This study presents a comprehensive assessment of PAHs contamination in the surface sediments of Burullus Lake,a vital and second largest delta lake in Egypt.The aim was to evaluate the eco-toxicity and potential health risks associated with the presence of these compounds.Surface seven sediment samples were collected from various drains in the southern part of Burullus Lake.Soxhlet extraction method was employed to extract PAHs(16PAHs)from the sediment sample.Analytically,target compounds were located using HPLC.The results showed that samples contained PAHs levels ranging from 0.038×10^(-6)to 0.459×10^(-6),which is considered heavily polluted by the European standard for PAHs pollution.Additionally,there was no apparent source of PAHs in the ElKhashah drain or the Brinbal Canal,as HPLC found none of the compounds.The most prevalent compound in sediment samples along the study area was fluoranthene.The diagnostic indices in the present study indicated that the hydrocarbons in the region originated from pyrolytic and man-made sources along the drains of Burullus Lake.The principal component analysis(PCA)and diagnostic ratios revealed that coal combustion and pyrolytic sources were responsible for the PAHs contamination in the surface sediments.The non-carcinogenic risk(HI),which is the product of the HQs for the adult and child populations,respectively,was calculated.HI values under 1,therefore,demonstrated that they had no carcinogenic effects on human health.TEQs and MEQs in the sediments of Burullus Lake do not have a cancer-causing impact on people.For the safety of nearby wildlife,aquatic life,and people,all activities that raise petroleum hydrocarbon levels in Burullus Lake must be adequately regulated and controlled.According to the ecological risk assessment,there is little chance that PAHs will be found in the sediments of Burullus Lake.This study underscores the urgent need for effective pollution control measures and regular monitoring of PAHs levels in Burullus Lake sediments to protect the aquatic ecosystem and public health.It also highlights the importance of considering eco-toxicity and human health risks in integrated risk assessments of PAHs-contaminated environments.
基金supported by Shaanxi Provincial Natural Science Foundation for Distinguished Young Scholars(2022JC)NSFC(41930863,42173023)The Science and Technology Plan Project of Qinghai Province Incentive Fund 2023。
文摘The availability of lithium resources is of great significance for the development of modern technologies,as well as for civil and military industries.The Qinghai-Tibet Plateau is a region known for its abundance of lithium-rich salt lakes.However,the specific origin of lithium in these lakes is still unknown,which hinders the advancement of the lithium resource business in this region.To research this issue,this study involved the collection of 20 samples from Lakkor Co Salt Lake on Qinghai-Tibet Plateau,encompassing samples of surface brine,cold springs,fresh lakes,and recharge rivers.The composition of anions and cations in these samples was determined.Furthermore,the analysis extensivelyutilizedthePiperthree-linediagram,Gibbs model,and ion proportion coefficient.The findings of this study indicate that as the moves from the recharge water system to salt lake,there is a transition in water type from strong carbonate to moderate carbonate and weak carbonate,as well as Na sulfate.This research based on a similar source of both lithium and boron,utilized ion correlation analysis and boron isotope study in the Lakkor Co area,and analyzed the source and transporting process of lithium.The main origin of lithium in Lakkor Co is the dissolution of lithiumrich rocks,recharge water systems,and deep hydrothermal fluids.These findings are highly significant in enhancing the foundational data of lithium-rich brine resources in the Qinghai-Tibet Plateau and are beneficial for assessing the future development of such deposits.
基金the Space Application Center, Ahmedabad (ISRO) for providing field support under “Integrated studies of Himalayan Cryosphere” programthe Glaciology Group, Jawaharlal Nehru University for providing necessary support for this research+1 种基金the grants from SERB (CRG/2020/004877) and MOES/16/19/2017-RDEAS projectsthe support from ISRO/RES/4/690/21-22 project
文摘Glacier inventories serve as critical baseline data for understanding the impacts of climate change on glaciers.The present study maps the outlines of glaciers in the Chandra-Bhaga Basin(western Himalaya)for the years 1993,2000,2010,and 2019 using Landsat Thematic Mapper(TM),Enhanced Thematic Mapper(ETM),and Operational Land Imager(OLI)datasets.A total of 251 glaciers,each having an area above 0.5 km^(2),were identified,which include 216 clean-ice and 35 debris-covered glaciers.Area changes are estimated for three periods:1993-2000,2000-2010,and 2010-2019.The total glacierized area was 996±62 km^(2) in 1993,which decreased to 973±70 km^(2) in 2019.The mean rate of glacier area loss was higher in the recent decade(2010-2019),at 0.036 km^(2),compared to previous decades(0.029 km^(2) in 2000-2010 and 0.025 km^(2) in 1993-2000).Supraglacial debris cover changes are also mapped over the period of 1993 and 2019.It is found that the supraglacial debris cover increased by 14.12±2.54 km^(2)(15.2%)during 1993-2019.Extensive field surveys on Chhota Shigri,Panchi II,Patsio,Hamtah,Mulkila,and Yoche Lungpa glaciers were carried out to validate the glacier outlines and supraglacial debris cover estimated using satellite datasets.Controls of various morphological parameters on retreat were also analyzed.It is observed that small,clean ice,south oriented glaciers,and glaciers with proglacial lakes are losing area at faster rates than other glaciers in the basin.
基金support of the State Assignments of the Institute of Marine Geology and Geophysics,Far Eastern Branch of the Russian Academy of Sciences and the Institute of Geography of the Russian Academy of Sciences(FMWS-2024-0005).
文摘Volcanic lakes in the Kuril-Kamchatka region are difficult to access,and for this reason,they remain poorly studied,with only scattered and brief data available.The authors have conducted a study of 10 lake basins using modern digital echolocation survey techniques and have also compiled and summarized published data for 15 lakes in the region,calculating their main morphometric characteristics.It has been established that many caldera lake basins are modified by young explosive funnels,extrusive or effusive domes,and exhibit traces of hydrothermal activity.While lakes of the same genetic type in the Kuril-Kamchatka region are similar in depth and depression forms,the group of caldera lakes shows less homogeneity across all morphometric indicators.It was found that the absolute heights of the reservoirs on Kamchatka Peninsula are generally greater than those on the Kuril Islands,as is often the case with the size of their basins.The volcanic lakes under study can rapidly change their volume and shape under the influence of endogenous processes.For the first time for this region,on the base of repeated observations,underwater extrusive dome rate growth and the approximate rates of 2 lake level changes were calculated.Repeated observations of lakes in the Ksudach calderas(Kamchatka)and on Simushir Island indicate approximate rates of level changes:a decrease ranging within 0.5-0.6 m per year(over a 27-year observation interval)and an increase reaching up to 0.26 m per year(over a 48-year interval).The growth rate of the underwater extrusive dome in Lake Shtyubel has averaged 1-1.6 m per year over the past 25 years.This analysis has facilitated the first generalization regarding the morphology and developmental features of crater and caldera lakes in the Kuril-Kamchatka region of Russia,representing an important step in their study.The results obtained will provide a solid foundation for subsequent research in this region and may be of interest to researchers studying other volcanic lakes.
基金supported by the Natural Science Foundation of Qinghai Province, China (No.2021-ZJ940Q)。
文摘In recent years, lakes on the Qinghai-Tibet Plateau have become more responsive to climate change. In September 2011, Zonag Lake in Hoh Xil experienced sudden drainage, the water eventually flowed into Yanhu Lake, which caused Yanhu Lake to continue to expand. The potential collapse of Yanhu Lake could directly threaten the operational safety of the adjacent Qinghai-Tibet Highway, Qinghai-Tibet Railway. To explore the implications of expanding lakes on the surrounding permafrost, we selected Hoh Xil Yanhu Lake on the Qinghai-Tibet Plateau to study the effect of lake expansion on permafrost degradation. The permafrost degradation in the Yanhu Lake basin from October 2017 to December 2022 was inverted using Sentinel-1 satellite image data and small baseline subset interferometry synthetic aperture radar(SBAS-In SAR) technology. Additionally, permafrost degradation from February 2007 and February 2010 was analyzed using advanced land observing satellite phased array-type L-band synthetic aperture radar(ALOS PALSAR) satellite images and differential interferometric synthetic aperture radar(D-In SAR) technique. The results showed that the permafrost around Yanhu Lake experienced accelerated degradation. Prior to the expansion of Yanhu Lake, the average annual deformation rate along the line of sight(LOS) direction was 6.7 mm/yr. After the expansion, the rate increased to 20.9 mm/yr. The integration of spatial-temporal distribution maps of surface subsidence, Wudaoliang borehole geothermal data, meteorological data, Yanhu Lake surface area changes, and water level changes supports the assertion that the intensified permafrost degradation could be attributed to lake expansion rather than the rising air temperature. Furthermore, permafrost degradation around Yanhu Lake could impact vital infrastructure such as the adjacent Qinghai-Tibet Highway and Qinghai-Tibet Railway.
文摘The salinization process resulted in agricultural damage in the Hula Valley and water quality deterioration in Lake Kinneret. Therefore, salinization-desalinization (SDS) processes have been emphasized in the last two decades. Global and regional extreme climatological events and water scarcity strengthen the link between Hula Valley and Lake Kinneret management design. A bond between optimizing Hula agricultural maintenance and Kinneret water quality protection is conclusively suggested. Saline contribution originated from the southern Hula Valley region to the underground and surface water is higher than from the northern organic soil. The impact of eastern water Intrusion from the Golan Heights as surface waters, river discharge and underground seepage into the Hula Valley represent north-south gradient enhancement. Salinized surface water contribution from the Hula Valley to Lake Kinneret is unwanted because presently Kinneret desalinization management policy is critically required. The present salinization of surface and underground water in the Hula Valley indicates the upper limit suitable for agricultural crop optimization and the decline of salinity is crucial. Enhancement of the portion of Jordan water within the total balance in the valley is beneficial for Hula agricultural crops but serves as a disadvantage to Kinneret desalinization implementation. Therefore, the enhancement of lake water exchange is recommended.
基金supported financially by the National Nature Science Foundation of China(No.41901129)the University Natural Sciences Research Project of Anhui Educational committee(KJ2020JD06)DUAN Zheng acknowledges the support from the Joint China-Sweden Mobility Grant funded by NSFC and STINT(CH2019-8250).
文摘The ice phenology of alpine lakes on the Tibetan Plateau(TP)is a rapid and direct responder to climate changes,and the variations in lake ice exhibit high temporal frequency characteristics.MODIS and passive microwave data are widely used to monitor lake ice changes with high temporal resolution.However,the low spatial resolutions make it difficult to effectively quantify the freeze-melt dynamics of lakes.This work used Sentinel-1 synthetic aperture radar(SAR)data to derive high-resolution ice maps(about 6 days),then with the aid of Sentinel-2 optical images to quantify freeze-melt processes in three typical lakes on the TP(e.g.Selin Co,Ayakekumu Lake,and Nam Co).The results showed that three lakes had an average annual ice period of 125-157 days and a complete ice cover period of 72-115 days,from 2018 to 2022.They exhibit different ice phenology patterns.Nam Co is characterized by repeated episodes of freezing,melting,and refreezing,resulting in a prolonged freeze-up period.Meanwhile,the break-up period of Nam Co lasts for a longer duration(about 19 days),and the break-up exhibits a smooth process.Similarly,Ayakekumu Lake showed more significant inter-annual fluctuations in the freeze-up period,with deviations of up to 28 days observed among different years.Compared to the other two lakes,Selin Co experienced a relatively short freeze-up and break-up period.In short,Sentinel-1 SAR data can effectively monitor the weekly and seasonal variations in lake ice on the TP.Particularly,this data facilitates quantification of the freeze-melt dynamics.
基金funded by the National Natural Science Foundation of China(grant numbers 42274111,41931074,42274113)。
文摘Extreme hydrological events such as droughts and floods have been increasingly influenced by abnormal atmospheric disturbances caused by human activity and global warming.The Dongting Lake Basin(DLB)has experienced challenging circumstances over the past 20 years due to complex climatic variations,leading to extreme flooding and drought.This study aims to investigate the spatiotemporal variation in terrestrial water storage anomalies(TWSA)over the DLB using data from the GRACE/GRACE-FO and GLDAS spanning the latest two decades.A significant decline trend in TWSA is unveiled from July 2019 to May 2023,with the rate of change determined as-1.94 cm/year and-1.99 cm/year based on the GRACE/GRACE-FO and GLDAS,respectively.The GRACE-Drought Severity Index(DSI)is employed to identify and evaluate the severity and spatiotemporal evolution of the 2022 drought event in the DLB.The results accurately capture the drought event,which began in July 2022 and continued until March 2023,with the most severe conditions occurring in October 2022,when the GRACE-DSI value stood at-2.06 and the TWSA decreased by 15.24 cm and 33.51 cm relative to the same month in 2021 and 2020,respectively.Additionally,the daily water level variation at the Chenglingji hydrological gauging station in 2022 broke previous records,reaching a minimum of only 19 m.Comparing the 2022 drought event with the drought events in 2006 and 2011,the impact of drought on vegetation growth conditions was relatively small,but there was still significant vegetation degradation across the DLB.
基金funded by the National Natural Science Foundation of China(Grant No.32360142).
文摘Extreme droughts are increasing in frequency and severity globally as a result of climate change.Developing understanding of species’responses to drought is crucial for their conservation,especially in regions experi-encing increased aridity.Although numerous studies have investigated birds’responses to drought,the emphasis has primarily been on landbirds.Drought can significantly alter the wetland environments that waterbirds inhabit,but the response of waterbirds to drought remains understudied.In this study,we surveyed the distri-bution and behavior of Oriental Storks(Ciconia boyciana)in Poyang Lake,which is the largest freshwater lake in China.Results indicate that drought-induced catchment areas at the lowest water level limited the total popu-lation size of Oriental Storks in the sub-lakes.Sub-lakes with large catchment areas at the lowest water level demonstrated a capacity to support a larger population of wintering Oriental Storks.Over time,Oriental Storks exhibited a gradual concentration in Changhu Lake,characterized by larger catchments,after resource depletion in sub-lakes with smaller catchments.Additionally,the duration of Oriental Storks’vigilance and moving be-haviors decreased significantly compared with that observed before the drought.After the drought,Oriental Storks increased their foraging efforts,as evidenced by increased presence in deeper water and reaching their heads and necks into deeper water to forage,higher search rates,but lower foraging rates.In accordance with area-restricted search theory,reductions in habitat quality resulting from drought,including extensive fish die-offs,forced Oriental Storks to increase their foraging efforts.Sustaining a specific water area in sub-lakes during droughts can preserve resource availability,which is crucial for the conservation of Oriental Storks.Imple-menting measures such as water level control and micro-modification of lake bottoms in sub-lakes might mitigate the impact of drought on the piscivorous Oriental Storks.
基金funded by the Poyang Lake Water Conservancy Project Office of the Department of Water Resources,Jiangxi Province,China(KT201537)the National Natural Science Foundation of China(Grant No.32360285)the National Geographic Air and Water Con-servation Fund(GEFC07-15).
文摘For migratory waterbirds,the quality of wintering habitat is related to spring migration and successful breeding in the next year.The availability of food resources in the habitat is critical and varies within water levels.Although the water-level fluctuations in Poyang Lake have been extremely variable interannually in recent years,the wintering waterbird populations have remained relatively stable.Hence,the mechanism of maintaining the stability is worth exploring.This study aimed to compare the distribution of vegetation and herbivorous wa-terbirds in 2015-2016 and 2016-2017,focusing on three shallow sub-lakes and one main lake are.The results showed that the emergence of tubers and the growth of Carex spp.provided a continuous food supply and habitat for wintering waterbirds with a gradual decline in the water level.Shallow sub-lakes supported almost all of the tuber-eating waterbirds(1.42-1.62×10^(5))and most geese(1.34-1.53×10^(6)).However,the main lake area,covered with Persicaria hydropiper,did not provide adequate and accessible food.This resulted in almost no distribution of tuber-eating waterbirds,with only a few geese congregating in early winter.Our results demonstrated that the shallow sub-lakes under human control provided a different environment from the main lake and are key to sustaining the successful wintering of hundreds of thousands of migratory waterbirds in Poyang Lake.Therefore,we recommend refining the anthropogenic management of the shallow sub-lakes to regulate the water level to ensure the carrying capacity of Poyang Lake.
文摘Lake is an important part of the natural ecosystem, and its morphological characteristics reflect the capacity of lake regulation and storage, the strength of material migration, and the characteristics of shoreline development. In most existing studies, remote sensing images are used to quantify the morphological characteristics of lakes. However, the extraction accuracy of lake water is greatly affected by cloud cover and vegetation cover, and the inversion accuracy of lake elevation data is poor, which cannot accurately describe the response relationship of lake landscape morphology with water level change. Therefore, this paper takes Tonle Sap Lake as the research object, which is the largest natural freshwater lake in Southeast Asia. DEM is constructed based on high-resolution measured topographic data, and morphological indicators such as lake area, lake shoreline length, perimeter area ratio, longest axis length, maximum width, shoreline development index, lake shape complexity, compactness ratio and form ratio are adopted to researching the evolution law of high water overflows and low water outbursts quantitatively, and clarifying the variation characteristics of landscape morphology with water level gradient in Tonle Sap Lake. The research results have important theoretical significance for the scientific utilization of Tonle Sap Lake water resources and the protection of the lake ecosystem.
基金Supported by the Project of Basic Investigation on Ecological Environment Quality of Erhai Lake(No.TPDL-2021-C 265)the Ecological Effects,Population Regulation and Management Strategies of Invasion of Japanese Smelt(Hypomesus nipponensis)in Erhai Lake funded by the government of Dali City,Yunnan Province,China(No.[2018]447)。
文摘Environmental DNA(eDNA)has been used as an important tool for fish diversity analysis,which can greatly solve the problems in traditional survey methodology.However,little work has been done on the actual monitoring accuracy of eDNA.In this study,we analyzed the current status of fish resources in Erhai Lake in Yunnan,SW China,by dividing the lake into three sectors according to habitat differences,and compared the results of eDNA and traditional capture methods to investigate the shortcomings of the current analysis of eDNA results.A total of 27 fish species were detected by eDNA and traditional capture methods,including 20 and 19 fish species,respectively,and additional differences in fish composition between the two methods.The alpha diversity showed higher fish abundance and lower fish diversity by eDNA method compared to the traditional capture method,demonstrating that eDNA was not superior for use in fish diversity analysis.Fish community similarity analysis showed that community differences were generally significant for eDNA(P<0.05).RDA analysis indicated that environmental factors did not significantly affect fish communities monitored by the eDNA method.However,water temperature,aquatic plants,and water depth had significant(P<0.05)effects on fish communities in the traditional capture method,suggesting that eDNA results are insensitive to the effects of environmental factors.Our results illustrate the effectiveness of eDNA in fish identification and the issues in quantification compared to traditional capture methods.Therefore,combining eDNA with traditional methods is a more effective method for analyzing eDNA metabarcoding,following which the protocols of both quantitative methods can be designed to explore the regularity of eDNA quantification.
文摘Over the last three decades,more than half of the world's large lakes and wetlands have experienced significant shrinkage,primarily due to climate change and extensive water consumption for agriculture and other human needs.The desiccation of lakes leads to severe environmental,economic,and social repercussions.Urmia Lake,located in northwestern Iran and representing a vital natural ecosystem,has experienced a volume reduction of over 90.0%.Our research evaluated diverse water management strategies within the Urmia Lake basin and prospects of inter-basin water transfers.This study focused on strategies to safeguard the environmental water rights of the Urmia Lake by utilizing the modeling and simulating(MODSIM)model.The model simulated changes in the lake's water volume under various scenarios.These included diverting water from incoming rivers,cutting agricultural water use by 40.0%,releasing dam water in non-agricultural seasons,treated wastewater utilization,and inter-basin transfers.Analytical hierarchy process(AHP)was utilized to analyze the simulation results.Expert opinions with AHP analysis,acted as a multi-criteria decision-making tool to evaluate the simulation and determine the optimal water supply source priority for the Urmia Lake.Our findings underscore the critical importance of reducing agricultural water consumption as the foremost step in preserving the lake.Following this,inter-basin water transfers are suggested,with a detailed consideration of the inherent challenges and limitations faced by the source watersheds.It is imperative to conduct assessments on the impacts of these transfers on the downstream users and the potential environmental risks,advocating for a diplomatic and cooperative approach with adjacent country.This study also aims to forecast the volumes of water that can be transferred under different climatic conditions—drought,normal,and wet years—to inform strategic water management planning for the Urmia Lake.According to our projection,implementing the strategic scenarios outlined could significantly augment the lake's level and volume,potentially by 3.57×109–9.38×109 m3 over the coming 10 a and 3.57×109–10.70×109 m3 in the subsequent 15 a.
文摘Based on 2022 and 2023 hydrometric data and satellite images (Sentinel 2022, SPOT 2010), this study aims to present the Nokoué Lake and its channels’ re-cent hydromorphological characteristics. Integrating flow, tributary morphology, and topography data determined specific power values along the axes studied. The values obtained range from 2.69 to 12.92 W/m2 for Ouémé River and 2.46 to 10.99 W/m2 for Sô River. The resulting water erosion on banks and bottoms is of linear, areolar, or gully and claw types. Lake bathymetry varies from -0.5 to -2.6 m (low flow period) and -1 to -4 m;in the Ouémé, Sô, and Totchè rivers, it varies from -5 m to -7 m, reaching -10 m at the Cotonou channel entrance (flood period). Bathymetric profiles reveal varied “U”, “V” and “Intermediate” bottom morphologies, influenced by erosion/sedimentation processes and human activities. The flow facies identified are lentic in the northern tributaries and lotic in the Cotonou and Totchè canals. Spatial analysis identified nine (09) thematic classes. In 2022, the surface area of the water body has increased from 274 km2 at low water to 280 km2 at high water, whereas in 2010 (a recent year of exceptional flooding), the surface area was 270 km2 at low water and 277 km2 at high water. Significant changes in land use are observed between 2010 and 2022. The floodplain area decreased slightly, from 421 km2 in 2010 (year of exceptional flooding) to 419 km2 in 2022. The evolution of land use shows a progressive expansion of the urban environment to the detriment of the natural environment. In the medium to long term, this trend could threaten the hydromorphological balance and even the existence of this important lagoon ecosystem.