期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Floating Waste Discovery by Request via Object-Centric Learning
1
作者 Bingfei Fu 《Computers, Materials & Continua》 SCIE EI 2024年第7期1407-1424,共18页
Discovering floating wastes,especially bottles on water,is a crucial research problem in environmental hygiene.Nevertheless,real-world applications often face challenges such as interference from irrelevant objects an... Discovering floating wastes,especially bottles on water,is a crucial research problem in environmental hygiene.Nevertheless,real-world applications often face challenges such as interference from irrelevant objects and the high cost associated with data collection.Consequently,devising algorithms capable of accurately localizing specific objects within a scene in scenarios where annotated data is limited remains a formidable challenge.To solve this problem,this paper proposes an object discovery by request problem setting and a corresponding algorithmic framework.The proposed problem setting aims to identify specified objects in scenes,and the associated algorithmic framework comprises pseudo data generation and object discovery by request network.Pseudo-data generation generates images resembling natural scenes through various data augmentation rules,using a small number of object samples and scene images.The network structure of object discovery by request utilizes the pre-trained Vision Transformer(ViT)model as the backbone,employs object-centric methods to learn the latent representations of foreground objects,and applies patch-level reconstruction constraints to the model.During the validation phase,we use the generated pseudo datasets as training sets and evaluate the performance of our model on the original test sets.Experiments have proved that our method achieves state-of-the-art performance on Unmanned Aerial Vehicles-Bottle Detection(UAV-BD)dataset and self-constructed dataset Bottle,especially in multi-object scenarios. 展开更多
关键词 Unsupervised object discovery object-centric learning pseudo data generation real-world object discovery by request
下载PDF
Automated Service Search Model for the Social Internet of Things
2
作者 Farhan Amin Seong Oun Hwang 《Computers, Materials & Continua》 SCIE EI 2022年第9期5871-5888,共18页
The social internet of things(SIoT)is one of the emerging paradigms that was proposed to solve the problems of network service discovery,navigability,and service composition.The SIoT aims to socialize the IoT devices ... The social internet of things(SIoT)is one of the emerging paradigms that was proposed to solve the problems of network service discovery,navigability,and service composition.The SIoT aims to socialize the IoT devices and shape the interconnection between them into social interaction just like human beings.In IoT,an object can offer multiple services and different objects can offer the same services with different parameters and interest factors.The proliferation of offered services led to difficulties during service customization and service filtering.This problem is known as service explosion.The selection of suitable service that fits the requirements of applications and objects is a challenging task.To address these issues,we propose an efficient automated query-based service search model based on the local network navigability concept for the SIoT.In the proposed model,objects can use information from their friends or friends of their friends while searching for the desired services,rather than exploring a global network.We employ a centrality metric that computes the degree of importance for each object in the social IoT that helps in selecting neighboring objects with high centrality scores.The distributed nature of our navigation model results in high scalability and short navigation times.We verified the efficacy of our model on a real-world SIoT-related dataset.The experimental results confirm the validity of our model in terms of scalability,navigability,and the desired objects that provide services are determined quickly via the shortest path,which in return improves the service search process in the SIoT. 展开更多
关键词 Social internet of things service discovery local navigability object discovery query generation model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部