期刊文献+
共找到281篇文章
< 1 2 15 >
每页显示 20 50 100
基于匝道合流数据的自动驾驶汽车安全性测试评价方法 被引量:1
1
作者 李文礼 李超 +2 位作者 李中峰 易帆 李安 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期84-91,共8页
针对自动驾驶汽车测试场景不明确、评价模型主观性强等问题,研究了高速匝道汇入场景下的典型测试场景提取方法和自动驾驶汽车匝道汇入安全性客观评价方法。深入分析了匝道汇入功能场景下的逻辑场景要素,对自然驾驶数据中的自车速度、车... 针对自动驾驶汽车测试场景不明确、评价模型主观性强等问题,研究了高速匝道汇入场景下的典型测试场景提取方法和自动驾驶汽车匝道汇入安全性客观评价方法。深入分析了匝道汇入功能场景下的逻辑场景要素,对自然驾驶数据中的自车速度、车间距离、前车车速等逻辑场景要素进行聚类,得到两类典型的匝道汇入测试场景用于自动驾驶汽车的仿真测试。构建多层次自动驾驶汽车评价体系,引入基于自然驾驶数据的核密度估计模型来获取指标最优阈值,建立以最优阈值为参考序列、以层次分析法(AHP)和客观赋权法(CRITIC)为权重输入的灰色关联理评价模型,对自动驾驶汽车在汇入过程中的安全性进行客观评价。评价结果表明:基于核密度估计的灰色关联理论模型评价结果与主观模糊综合分析模型的评价结果相似率达98.01%,验证了客观模型的有效性。 展开更多
关键词 车辆工程 测试评价 客观评价模型 聚类分析 核密度估计
下载PDF
改进YOLOv5su模型检测桃树缩叶病 被引量:1
2
作者 姚凌云 周俊峰 李丽 《农业工程学报》 EI CAS CSCD 北大核心 2024年第14期109-117,共9页
为实现自然环境下桃树缩叶病的检测,该研究提出了一种基于YOLOv5su的桃树缩叶病识别改进模型DLLYOLOv5su。首先,针对桃树缩叶病目标特征变化较大的问题,在骨干网络最后一层C3模块中加入可变形自注意力模块(deformable attention,DA),使... 为实现自然环境下桃树缩叶病的检测,该研究提出了一种基于YOLOv5su的桃树缩叶病识别改进模型DLLYOLOv5su。首先,针对桃树缩叶病目标特征变化较大的问题,在骨干网络最后一层C3模块中加入可变形自注意力模块(deformable attention,DA),使模型更加关注目标区域,降低背景对模型的影响,提高模型在复杂背景下的拟合能力。其次在SPPF(fast spatial pyramid pooling)模块中引入LSKA(large separable kernel attention)结构,大核卷积增大了模型的感受野,使模型能够关注更多信息。最后,提出了LAWD(lightweight adaptive weighted downsampling)模块,使用轻量化的下采样结构替换卷积模块,减少计算开销。在桃树缩叶病数据集上进行试验,结果显示,DLL-YOLOv5su模型权重大小为17.6 MB,检测速度为83帧/s。识别准确率P、召回率R和平均精度均值mAP_(50)分别达到了80.7%、73.1%和80.4%,相较于原始YOLOv5su分别提高了4.2、2.4和4.3个百分点。与YOLOv3-tiny、Faster R-CNN、YOLOv7和YOLOv8相比mAP_(50)分别高出了28.5、11.8、2.1和4.1个百分点。改进模型识别精度高,误检、漏检率低,检测速度满足实时检测的要求,可以为桃树缩叶病的实时监测和预警提供参考。 展开更多
关键词 图像处理 病害 缩叶病 目标检测 YOLOv5su 可变形自注意力 大核卷积 轻量化
下载PDF
对象驱动的Linux内核crash分类技术研究
3
作者 何林浩 魏强 +1 位作者 王允超 郭志民 《小型微型计算机系统》 CSCD 北大核心 2024年第4期926-932,共7页
Crash(程序崩溃)分析是漏洞挖掘与利用的关键阶段,精准的crash分类是crash分析和漏洞利用的前提.针对现有的Linux内核crash存在大量重复的问题,本文提出一种对象驱动的Linux内核crash分类方法.该方法将内核crash与内核对象的关系建模为... Crash(程序崩溃)分析是漏洞挖掘与利用的关键阶段,精准的crash分类是crash分析和漏洞利用的前提.针对现有的Linux内核crash存在大量重复的问题,本文提出一种对象驱动的Linux内核crash分类方法.该方法将内核crash与内核对象的关系建模为二部图结构,从而将crash分类问题转化为内核对象的相似性对比问题.首先,通过对crash执行后向污点分析提取crash相关的内核对象;其次,构造内核对象调用图计算内核与根本原因的相关性度量;最后,基于上述结果构造二部图实现crash相似性比较算法.基于上述方法,本文开发出了Linux内核crash分类的原型系统.通过在真实的数据集上进行实验,验证了系统的有效性和可用性,弥补了现有分类方法粒度较粗,存在误报较多的问题. 展开更多
关键词 crash分类 LINUX内核 内核对象 污点分析
下载PDF
面向无人机视角下小目标检测的YOLOv8s改进模型 被引量:4
4
作者 潘玮 韦超 +1 位作者 钱春雨 杨哲 《计算机工程与应用》 CSCD 北大核心 2024年第9期142-150,共9页
从无人机视角进行目标检测,面临图像目标小、分布密集、类别不均衡等难点,且由于无人机的硬件条件限制了模型的规模,导致模型的准确率偏低。提出一种融合多种注意力机制的YOLOv8s改进模型,在骨干网络中引入感受野注意力卷积和CBAM(conce... 从无人机视角进行目标检测,面临图像目标小、分布密集、类别不均衡等难点,且由于无人机的硬件条件限制了模型的规模,导致模型的准确率偏低。提出一种融合多种注意力机制的YOLOv8s改进模型,在骨干网络中引入感受野注意力卷积和CBAM(concentration-based attention module)注意力机制改进卷积模块,解决注意力权重参数在感受野特征中共享问题的同时,在通道和空间维度加上注意力权重,增强特征提取能力;通过引入大型可分离卷积注意力思想,改造空间金字塔池化层,增加不同层级特征间的信息交融;优化颈部结构,增加具有丰富小目标语义信息的特征层;使用inner-IoU损失函数的思想改进MPDIoU(minimum point distance based IoU)函数,以innerMPDIoU代替原损失函数,提升对困难样本的学习能力。实验结果表明,改进后的YOLOv8s模型在VisDrone数据集上mAP、P、R分别提升了16.1%、9.3%、14.9%,性能超过YOLOv8m,可以有效应用于无人机平台上的目标检测任务。 展开更多
关键词 无人机 小目标检测 YOLOv8s 感受野注意力 大型可分离卷积
下载PDF
基于深度学习的小目标检测技术研究进展(特邀)
5
作者 刘耿焕 曾祥津 +4 位作者 豆嘉真 任振波 钟丽云 邸江磊 秦玉文 《红外与激光工程》 EI CSCD 北大核心 2024年第9期184-216,共33页
小目标检测在自动驾驶、安防等领域具有重要的应用价值。然而,由于小目标自身视觉特征不明显、复杂背景干扰以及信噪比低等因素,使得小目标检测一直以来都是一个极具挑战性的难题。笔者系统回顾了当前基于深度学习方法的小目标检测技术... 小目标检测在自动驾驶、安防等领域具有重要的应用价值。然而,由于小目标自身视觉特征不明显、复杂背景干扰以及信噪比低等因素,使得小目标检测一直以来都是一个极具挑战性的难题。笔者系统回顾了当前基于深度学习方法的小目标检测技术,对现有算法进行了系统地归类、分析和比较:界定了小目标检测的概念,总结了小目标检测所面临的主要挑战;着重讨论了几种主要的网络优化策略,如利用数据增强技术提高模型的泛化能力,通过超分辨率技术改善小目标可视性,采用多尺度信息融合技术提升检测精度,以及基于上下文信息学习和大核卷积策略改进特征表达能力、无锚框检测机制、DETR技术和针对特定应用场景的多模态小目标检测等方法并详细分析了其优缺点;全面介绍了现有小目标数据集,并在常用公共数据集上对目前经典的小目标检测算法进行了测试和性能评估;对小目标检测领域未来的研究方向进行了展望,旨在推动小目标检测技术的进一步发展和应用拓展。 展开更多
关键词 深度学习 小目标 目标检测 双模态 大核卷积
下载PDF
系统故障演化过程中关键事件的确定方法研究
6
作者 李莎莎 崔铁军 《安全与环境学报》 CAS CSCD 北大核心 2024年第5期1716-1722,共7页
为研究系统故障演化过程中关键事件的确定方法,提出了一种基于核局部保持投影(Kernel Locality Preserving Projections,KLPP)的关键事件确定方法。首先论述了系统故障演化过程、关键事件和因素空间,随后提出了关键事件确定方法,最后进... 为研究系统故障演化过程中关键事件的确定方法,提出了一种基于核局部保持投影(Kernel Locality Preserving Projections,KLPP)的关键事件确定方法。首先论述了系统故障演化过程、关键事件和因素空间,随后提出了关键事件确定方法,最后进行了实例分析。研究认为系统故障演化过程具有复杂的结构和层次,经历事件是演化测量得到的对象,其中具有决定作用的就是关键事件。关键事件是描述演化过程的基础,可通过因素空间中的对象分布进行确定。通过KLPP方法对对象分布特征进行研究,实现近邻对象分析,得到特征对象。这些特征对象对应的经历事件即为关键事件。按照测量时刻升序排列特征对象即为所求,最终作为描述演化过程的空间故障网络的节点。实例分析得到了预期结果,并说明了方法的特点和研究意义。 展开更多
关键词 安全科学技术基础学科 系统故障 演化过程 关键事件 特征对象 核局部保持投影(KLPP)
下载PDF
改进KCF的尺度自适应目标跟踪算法研究
7
作者 刘思思 陈忠 +1 位作者 徐雪茹 吴亮 《计算机与数字工程》 2024年第5期1359-1365,1393,共8页
针对KCF跟踪算法在目标跟踪过程中存在目标尺度变化时检测精度低、目标遮挡时跟踪容易丢失等问题,提出了SMAKCF(Scale-Adaptive Multiple-Feature Anti-Occlusion KCF)跟踪算法,该算法同时优化了KCF算法中的尺度响应、特征选择及模板更... 针对KCF跟踪算法在目标跟踪过程中存在目标尺度变化时检测精度低、目标遮挡时跟踪容易丢失等问题,提出了SMAKCF(Scale-Adaptive Multiple-Feature Anti-Occlusion KCF)跟踪算法,该算法同时优化了KCF算法中的尺度响应、特征选择及模板更新策略,融合HOG特征及CN特征,加入尺度估计滤波器并利用APCE判据改进位置滤波器的更新方式,同时引入了一个检测模块对不可靠跟踪结果进行重检测。在Visual Tracker Benchmark的50个测试视频序列上进行实验来评估算法的性能,实验表明,SMAKCF算法能够有效地解决目标的尺度变化及遮挡问题,提高跟踪算法在长时目标跟踪过程中的性能。 展开更多
关键词 核相关滤波 尺度变化 目标遮挡 重检测
下载PDF
KCPStack:张量分解的卷积核分层矩阵压缩方法
8
作者 王鼎衡 刘保荣 +1 位作者 杨维 杨朝旭 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第3期137-148,共12页
针对现有张量分解卷积核压缩方法难以兼顾时空轻量化、过于依赖卷积瓶颈结构等问题,提出一种具有可观压缩与加速能力的卷积核分层矩阵压缩方法(KCPStack)。首先,在矩阵乘法视角下,将卷积核按通道拆分为2阶克罗内克规范多项式(KCP)分解,... 针对现有张量分解卷积核压缩方法难以兼顾时空轻量化、过于依赖卷积瓶颈结构等问题,提出一种具有可观压缩与加速能力的卷积核分层矩阵压缩方法(KCPStack)。首先,在矩阵乘法视角下,将卷积核按通道拆分为2阶克罗内克规范多项式(KCP)分解,所得因子张量组合为两层权重矩阵,使卷积计算转换为具有较高推理效率的双层轻量卷积结构;其次,对比所提KCPStack方法与其他典型张量分解卷积核压缩方法的参数约减空间复杂度与推理计算时间复杂度;最后,基于RK3588神经处理单元进行KCPStack方法的部署,面向实际场景目标检测识别需求开发相关应用。实验结果表明:与现有张量分解方法相比,在张量秩相同或者参数量相当的前提下,所提KCPStack方法具有最快的推理计算效率;在图像分类标准数据集CIFAR-10和ImageNet上,KCPStack方法能够将精度损失控制在1%左右,最高可减少85.0%的参数量和79.8%的计算量;在目标检测识别标准数据集COCO上,KCPStack方法相对于基线模型的平均精度下降不超过1%;采用所提KCPStack方法对实际场景进行目标检测识别,在RK3588神经处理单元上能达到95.4%的平均精度和35帧/s的图像处理帧率,内存开销仅为33.1 MB。 展开更多
关键词 克罗内克规范多项式张量分解 卷积核压缩 推理效率 分层矩阵 目标检测识别
下载PDF
智慧教育下基于改进YOLOv8的学生课堂行为检测算法
9
作者 曾钰琦 刘博 +1 位作者 钟柏昌 钟瑾 《计算机工程》 CAS CSCD 北大核心 2024年第9期344-355,共12页
为了加快教育的数字化转型,人工智能技术融入教与学全过程行为的精准分析与实证应用已成为当前的研究热点。针对目前学生课堂行为检测中存在的检测精度低、目标框密度高、重叠遮挡严重、尺度变化大以及数据量不平衡等问题,创建学生课堂... 为了加快教育的数字化转型,人工智能技术融入教与学全过程行为的精准分析与实证应用已成为当前的研究热点。针对目前学生课堂行为检测中存在的检测精度低、目标框密度高、重叠遮挡严重、尺度变化大以及数据量不平衡等问题,创建学生课堂行为数据集DBS Dataset,并提出一种基于改进YOLOv8的学生课堂行为检测算法VWE-YOLOv8。首先引入注意力机制CSWin-Transformer,增强模型对图像全局信息的提取能力,提高网络的检测精度;然后集成大可分离核心注意力(LSKA)模块到SPPF架构中,增加模型在多尺度目标上的识别能力;接着将遮挡感知注意力机制融入到检测头的设计中,将原有的Head结构修改为SEAMHead,实现模型对遮挡物体的有效检测;最后引入权重调整函数Slide Loss来处理样本不均衡问题。实验结果表明,与YOLOv8相比,在DBS Dataset和公开数据集SCB Dataset上,改进后VWE-YOLOv8的mAP@0.50分别提高了1.16%、1.70%,mAP@0.50∶0.95分别提高了7.36%、2.13%,精度分别提升了4.17%、6.74%,召回率分别提升了1.96%、3.13%,说明该算法具有更高的检测精度和较强的泛化能力,能够胜任学生课堂行为的检测任务,有力支撑智慧教育应用,助力教育数字化转型。 展开更多
关键词 智慧教育 学生行为检测 目标检测 注意力机制 大可分离核心注意力模块
下载PDF
多核支持向量机预测电网系统可靠性
10
作者 何井龙 张福泉 +1 位作者 阳晟 周智成 《济南大学学报(自然科学版)》 CAS 北大核心 2024年第4期462-467,共6页
为了改善电网系统可靠性预测性能,构建多个目标函数并采用多核支持向量机算法对配电网进行可靠性预测;从电网样本特征中筛选供电可用率、户均停电时间、户均停电次数3个关键指标,建立可靠性评价目标函数,且采用多核支持向量机训练可靠... 为了改善电网系统可靠性预测性能,构建多个目标函数并采用多核支持向量机算法对配电网进行可靠性预测;从电网样本特征中筛选供电可用率、户均停电时间、户均停电次数3个关键指标,建立可靠性评价目标函数,且采用多核支持向量机训练可靠性指标特征;将高斯核函数、多项式核函数和Sigmoid核函数进行多核组合,采用多核支持向量机求解不同目标函数,获得电网系统可靠性预测结果,进而确定更佳的可靠性预测核函数组合。结果表明,合理选择核函数组合和电网可靠性指标,多核支持向量机对供电可用率、户均停电时间和户均停电次数指标预测准确率较高,且稳定性好,高斯核函数-Sigmoid核函数组合的可靠性预测准确性最佳,高斯核函数-多项式核函数-Sigmoid核函数组合的预测稳定性最好。 展开更多
关键词 电网系统可靠性 多核函数 支持向量机 目标函数
下载PDF
基于遥感影像数据和POI数据的城市建设用地提取
11
作者 张珩 熊梅 《河北省科学院学报》 CAS 2024年第5期60-66,共7页
城市建设用地能够反映城市在地域空间上的分布形态,是衡量城市发展的重要指标。针对城市建设用地的提取,本文提出一种结合遥感影像数据和兴趣点(point of information,POI)数据的城市建设用地提取方法。首先根据珞珈一号夜间灯光数据和... 城市建设用地能够反映城市在地域空间上的分布形态,是衡量城市发展的重要指标。针对城市建设用地的提取,本文提出一种结合遥感影像数据和兴趣点(point of information,POI)数据的城市建设用地提取方法。首先根据珞珈一号夜间灯光数据和归一化植被指数(normalized difference vegetation index,NDVI)的亮度、纹理等信息进行多尺度面向对象检测,得到一个城市建设用地;然后使用地理探测器对POI数据进行筛选,利用筛选后的POI数据进行核密度分析提取得到另一个城市建设用地;最后通过对两种提取结果进行融合,得到精确的城市建设用地。结果表明,本方法提取的城市建设用地完整性好,与实际的城市建设用地较为吻合。该方法可为使用多源数据在市级尺度上提取城市建设用地提供参考。 展开更多
关键词 城市建设用地 珞珈一号 夜间灯光 面向对象 POI数据 地理探测器 核密度分析
下载PDF
概率扩充和改进OIM损失的多目标跟踪算法
12
作者 付小珊 胡乃平 +1 位作者 秦建伟 王传旭 《计算机工程与设计》 北大核心 2024年第7期2187-2194,共8页
为解决多目标跟踪中联合目标检测和重识别训练时间过长、多分支特征不对齐和目标相互遮挡的身份转换问题,提出一种高效的多目标跟踪算法。在特征提取阶段利用深层聚合网络联合多层次特征,在重识别阶段通过三元组对在线实例匹配损失进行... 为解决多目标跟踪中联合目标检测和重识别训练时间过长、多分支特征不对齐和目标相互遮挡的身份转换问题,提出一种高效的多目标跟踪算法。在特征提取阶段利用深层聚合网络联合多层次特征,在重识别阶段通过三元组对在线实例匹配损失进行增强,缓解特征不对齐问题。加入高斯核函数对训练样本进行概率扩充,缩短训练时间。利用运动、外观特征与卡尔曼滤波实现高效的在线关联,利用轨迹池暂存丢失的轨迹,提高目标相互遮挡时的跟踪性能。算法在MOT15和MOT17数据集上的准确度分别达到了60.1%与74.2%,MOT17上的FPS也达到21.6 Hz。 展开更多
关键词 多目标跟踪 目标检测 重识别 深层聚合 高斯核 在线实例匹配 卡尔曼滤波
下载PDF
系统故障演化过程中不同类对象分布的确定方法
13
作者 李莎莎 崔铁军 《中国安全科学学报》 CAS CSCD 北大核心 2024年第7期1-7,共7页
为解决系统故障中不同类对象的分布确定问题,提出一种对象分布确定方法。首先,论述系统故障演化过程的特点和对象分布;其次,给出方法流程图和实现过程;最后,实例研究50个对象6个因素构成的基础数据矩阵,得到最大训练集互相关度为0.8,测... 为解决系统故障中不同类对象的分布确定问题,提出一种对象分布确定方法。首先,论述系统故障演化过程的特点和对象分布;其次,给出方法流程图和实现过程;最后,实例研究50个对象6个因素构成的基础数据矩阵,得到最大训练集互相关度为0.8,测试集互相关度为1,以及最优对象标签分布(对象分布)。研究结果表明:演化过程的数据基础是对象集合;方法以无监督核谱回归(UKSR)为基础,配合K-means和互信息方法,构造随机均匀分布的对象标签集合,提出最优对象标签集合的判据;通过循环确定对象标签与对象数据相关性最大时的最优对象标签集合;集合中标签值即为最优的对象分布情况;方法克服无监督学习和非线性映射等问题,且能在无监督且非线性条件下,对系统故障演化过程中测量得到的对象进行分类,分析所有对象的类标签随演化时间的分布情况,缺点是只能用于研究二维平面表示的系统故障演化过程。 展开更多
关键词 系统故障演化 对象分布 确定方法 无监督核谱回归(UKSR) K-MEANS 互信息
下载PDF
基于大核卷积和密集目标细化的遥感图像多尺度特征增强网络
14
作者 王占魁 秦品乐 曾建潮 《中北大学学报(自然科学版)》 CAS 2024年第5期628-637,共10页
针对遥感图像中目标尺度变化差异大、方向任意和分布密集,现有检测方法较少直接关注密集边缘信息且目标无法获得合适的感受野,遥感检测效果较差的问题,本文提出了一种基于大核卷积和密集目标细化的多尺度特征增强网络(LKCSFP-NET)来进... 针对遥感图像中目标尺度变化差异大、方向任意和分布密集,现有检测方法较少直接关注密集边缘信息且目标无法获得合适的感受野,遥感检测效果较差的问题,本文提出了一种基于大核卷积和密集目标细化的多尺度特征增强网络(LKCSFP-NET)来进行遥感图像的检测。该网络首先在SKNET基础上增加了空洞卷积形成大核卷积块(LKB),从而获得小目标的最佳感受野以及提升了网络对多尺度的适应性和准确度;其次在FPN基础上增加了集中空间特征金字塔CSFP模块,通过将全局语义信息与局部语义信息相结合,解决了遥感图像因目标分布密集以及背景复杂导致的检测效率较低的问题。实验结果表明,在DOTA和HRSC2016公开数据集上,所提算法在2个数据集上的平均检测精度分别为75.96%和96.60%,较基线网络提升了1.36百分点和0.63百分点,优于现有大多数模型。所提出的LKCSFP-NET在两个公开数据集中表现稳定,对小目标和密集排列的目标都有较好的检测效果,高于现有大多数模型的检测精度,可以很好地应用于遥感目标的检测。 展开更多
关键词 目标检测 遥感图像 多尺度 大核卷积 密集检测 特征融合
下载PDF
融合空谱特征的MR-KRVFL高光谱地物识别模型研究
15
作者 郭国璐 范玉刚 冯晓苏 《化工自动化及仪表》 CAS 2024年第2期284-293,共10页
针对高光谱图像复杂空谱特性影响地物识别模型分类精度的问题,提出一种融合空谱特征的流形正则化核随机向量函数连接网络(MR-KRVFL)高光谱图像地物识别方法。首先,对高光谱图像进行熵率超像素分割(ERS),获取对应的同质区域;其次,利用主... 针对高光谱图像复杂空谱特性影响地物识别模型分类精度的问题,提出一种融合空谱特征的流形正则化核随机向量函数连接网络(MR-KRVFL)高光谱图像地物识别方法。首先,对高光谱图像进行熵率超像素分割(ERS),获取对应的同质区域;其次,利用主元分析(PCA)对同质区域进行降维并提取其空谱联合特征;最后,基于空谱特征信息,构造核随机向量函数连接网络(KRVFL)地物识别模型,并对模型进行流形正则化约束,提高高光谱图像地物识别模型的泛化性能。将该模型应用于Indian Pines和Pavia University高光谱数据集,分类精度达到了96.84%和98.83%,证明所提模型的有效性。 展开更多
关键词 熵率超像素分割 高光谱图像 核函数 流形正则化 分类精度 地物识别
下载PDF
自主导航农业车辆的全景视觉多运动目标识别跟踪 被引量:16
16
作者 李盛辉 田光兆 +3 位作者 姬长英 周俊 顾宝兴 王海青 《农业机械学报》 EI CAS CSCD 北大核心 2015年第1期1-7,共7页
为提高自主导航农业车辆导航路径的准确性和行驶作业的安全性,提出自主导航农业车辆的全景视觉多运动目标识别跟踪方案。该方案采用全景视觉进行无盲区的多运动障碍目标的检测,并解决了多运动目标跟踪中遮挡重叠的问题。首先系统将多目... 为提高自主导航农业车辆导航路径的准确性和行驶作业的安全性,提出自主导航农业车辆的全景视觉多运动目标识别跟踪方案。该方案采用全景视觉进行无盲区的多运动障碍目标的检测,并解决了多运动目标跟踪中遮挡重叠的问题。首先系统将多目相机采集的图像拼接成全景图像,采用分段图像的改进核函数算法对运动目标进行快速自动检测跟踪;其次采用基于路径预测的粒子滤波算法进行多运动目标跟踪并解决遮挡重叠的问题。通过试验表明:采用改进的核函数目标快速跟踪算法,与传统核函数跟踪算法相比,减少系统内存消耗66.8%,加快运算速度35.63%;采用基于路径预测的粒子滤波多目标跟踪算法,在多运动目标遮挡重叠的情况下,平均提高运动目标跟踪成功率39.5个百分点,算法平均耗时0.78s。 展开更多
关键词 农业车辆 自主导航 全景视觉 多运动目标 核函数 粒子滤波
下载PDF
Mean-Shift跟踪算法中核函数窗宽的自动选取 被引量:165
17
作者 彭宁嵩 杨杰 +1 位作者 刘志 张风超 《软件学报》 EI CSCD 北大核心 2005年第9期1542-1550,共9页
传统核窗宽固定的Mean-Shift跟踪算法不能很好地对逐渐增大尺寸的目标进行有效的跟踪.在分析同一目标在不同尺度下核直方图基于Bhattacharyya系数相似性的基础上,发现并证明了在核窗宽固定的条件下,目标在其窗宽范围内进行缩放、平移运... 传统核窗宽固定的Mean-Shift跟踪算法不能很好地对逐渐增大尺寸的目标进行有效的跟踪.在分析同一目标在不同尺度下核直方图基于Bhattacharyya系数相似性的基础上,发现并证明了在核窗宽固定的条件下,目标在其窗宽范围内进行缩放、平移运动并不影响Mean-Shift跟踪算法空间定位的准确性.在此基础上,提出了一种基于后向跟踪、形心配准的核窗宽自动选取算法.对尺度渐大的车辆进行的跟踪实验验证了该算法的有效性. 展开更多
关键词 MEAN-SHIFT 目标跟踪 核窗宽选取 BHATTACHARYYA系数 仿射模型
下载PDF
基于粒子滤波的红外目标跟踪 被引量:73
18
作者 程建 周越 +1 位作者 蔡念 杨杰 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2006年第2期113-117,共5页
粒子滤波(Partic le F ilter)是一种处理非线性和非高斯动态系统状态估计的有效技术.提出了一种基于粒子滤波的红外目标稳健跟踪新方法.在粒子滤波理论框架下,红外目标的状态后验概率分布用加权随机样本集表示,通过这些随机样本的Bayes... 粒子滤波(Partic le F ilter)是一种处理非线性和非高斯动态系统状态估计的有效技术.提出了一种基于粒子滤波的红外目标稳健跟踪新方法.在粒子滤波理论框架下,红外目标的状态后验概率分布用加权随机样本集表示,通过这些随机样本的Bayesian迭代进化实现红外目标的跟踪.系统状态转移模型选择为简单的二阶自回归模型,并自适应地确定系统噪声方差.红外目标的描述利用目标区域的灰度分布,该灰度分布通过核概率密度估计建立.通过计算参考目标的灰度分布和目标样本的灰度分布之间的Bhattacharyya距离,建立系统观测概率模型.实验结果表明该方法是有效的和稳健的. 展开更多
关键词 粒子滤波 红外目标跟踪 核密度估计 BHATTACHARYYA系数
下载PDF
大地电磁自适应正则化反演算法 被引量:149
19
作者 陈小斌 赵国泽 +2 位作者 汤吉 詹艳 王继军 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2005年第4期937-946,共10页
针对大地电磁正则化反演中正则化因子的选取困难问题提出了自适应正则化反演算法(AdaptiveRegularizedInversionAlgorithm,ARIA).在该算法中,①提出了一种新的数据方差处理方法:数据方差规范化,使得数据方差的大小只对数据的拟合发生影... 针对大地电磁正则化反演中正则化因子的选取困难问题提出了自适应正则化反演算法(AdaptiveRegularizedInversionAlgorithm,ARIA).在该算法中,①提出了一种新的数据方差处理方法:数据方差规范化,使得数据方差的大小只对数据的拟合发生影响,不对数据目标函数和模型约束目标函数的权重产生影响,从而减少了正则化因子取值的影响因素;②提出了粗糙度核矩阵的概念,并给出了由基本结构插值基函数计算粗糙度核矩阵的公式,使得模型目标函数的构建更为简便、直接;③根据数据目标函数、模型约束目标函数和正则化因子之间的关系,提出了两种正则化因子自适应调节方法.本文详细阐述了最平缓模型约束下的大地电磁一维连续介质反演的ARIA实现,以几个算例的分析比较来说明ARIA的有效性. 展开更多
关键词 自适应正则化反演算法 目标函数 粗糙度核矩阵 大地电磁 连续介质
下载PDF
自适应窗口选取的Mean-Shift目标跟踪 被引量:5
20
作者 王明佳 武治国 +2 位作者 韩广良 王延杰 张叶 《光子学报》 EI CAS CSCD 北大核心 2012年第1期67-71,共5页
当目标尺度发生变化时,传统Mean-Shift跟踪算法因跟踪窗口尺寸不变容易导致跟踪目标丢失,为解决此问题,本文提出一种带宽自适应算法对目标尺度变化进行检测,从而实现模板更新.该算法分别将模板图像与当前帧目标图像分割成等间隔半径的... 当目标尺度发生变化时,传统Mean-Shift跟踪算法因跟踪窗口尺寸不变容易导致跟踪目标丢失,为解决此问题,本文提出一种带宽自适应算法对目标尺度变化进行检测,从而实现模板更新.该算法分别将模板图像与当前帧目标图像分割成等间隔半径的若干同心圆,通过计算模板图像与当前帧图像不同环层之间相似性度量,根据相应环层之间相似性度量关系确定当前帧模板带宽更新参量,最后利用kalman滤波完成模板尺度更新,从而实现目标稳定跟踪.实验证明,当目标尺度发生变化时,目标模板自动更新,能够实现目标稳定跟踪;相对传统Mean-Shift跟踪算法,目标跟踪可靠性能得到了提高. 展开更多
关键词 MEAN-SHIFT 目标跟踪 核函数带宽 自适应性
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部