Objective The Gaoligongshan oblique collisional orogen is located in the southern section of the Hengduan Mountains, and belongs to one of the main Late Yanshanian-Himalayan oblique collisional orogens in the Sanjiang...Objective The Gaoligongshan oblique collisional orogen is located in the southern section of the Hengduan Mountains, and belongs to one of the main Late Yanshanian-Himalayan oblique collisional orogens in the Sanjiang area. Many researchers have studied the geology, geochemistry and geophysics of this region, and many research achievements have been obtained from deep geophysical exploration of the region, especially using the magnetotelluric (MT) sounding technique. However,展开更多
Although the coefficient of restitution was originally thought to be only a material property, the coefficient of restitution also depends upon initial conditions as well as on the frictional effect for oblique collis...Although the coefficient of restitution was originally thought to be only a material property, the coefficient of restitution also depends upon initial conditions as well as on the frictional effect for oblique collisions. The objective of this paper is to demonstrate a method for obtaining the coefficient of restitution for oblique collisions and thereby to provide a theoretical guide for collision experiments. In this paper, we derive expressions for the energetic coefficient of restitution (e*) based on general normal contact deformation law, by which the value of e* can be obtained according to the initial conditions. An example shows that the results calculated by the derived expressions are reasonable.展开更多
A flexible beam with large overall rotating motion impacting with a rigid slope is studied in this paper. The tangential friction force caused by the oblique impact is analyzed. The tangential motion of the system is ...A flexible beam with large overall rotating motion impacting with a rigid slope is studied in this paper. The tangential friction force caused by the oblique impact is analyzed. The tangential motion of the system is divided into a stick state and a slip state. The contact constraint model and Coulomb friction model are used respectively to deal with the two states. Based on this hybrid modeling method, dynamic equations of the system, which include all states(before, during, and after the collision)are obtained. Simulation results of a concrete example are compared with the results obtained from two other models: a nontangential friction model and a modified Coulomb model. Differences in the results from the three models are discussed. The tangential friction force cannot be ignored when an oblique impact occurs. In addition, the results obtained from the model proposed in this paper are more consistent with real movement.展开更多
基金the National Natural Science Foundation of China(grants No.41504061 and 41674078)the National Key Research and Development Project of China(grant No. 2016YFC0600302)
文摘Objective The Gaoligongshan oblique collisional orogen is located in the southern section of the Hengduan Mountains, and belongs to one of the main Late Yanshanian-Himalayan oblique collisional orogens in the Sanjiang area. Many researchers have studied the geology, geochemistry and geophysics of this region, and many research achievements have been obtained from deep geophysical exploration of the region, especially using the magnetotelluric (MT) sounding technique. However,
文摘Although the coefficient of restitution was originally thought to be only a material property, the coefficient of restitution also depends upon initial conditions as well as on the frictional effect for oblique collisions. The objective of this paper is to demonstrate a method for obtaining the coefficient of restitution for oblique collisions and thereby to provide a theoretical guide for collision experiments. In this paper, we derive expressions for the energetic coefficient of restitution (e*) based on general normal contact deformation law, by which the value of e* can be obtained according to the initial conditions. An example shows that the results calculated by the derived expressions are reasonable.
基金supported by the National Natural Science Foundation of China(Grants 11272155,11132007,and11502113)the 333 Project of Jiangsu Province in China(Grant BRA2011172)the Fundamental Research Funds for Central Universities(Grant 30920130112009)
文摘A flexible beam with large overall rotating motion impacting with a rigid slope is studied in this paper. The tangential friction force caused by the oblique impact is analyzed. The tangential motion of the system is divided into a stick state and a slip state. The contact constraint model and Coulomb friction model are used respectively to deal with the two states. Based on this hybrid modeling method, dynamic equations of the system, which include all states(before, during, and after the collision)are obtained. Simulation results of a concrete example are compared with the results obtained from two other models: a nontangential friction model and a modified Coulomb model. Differences in the results from the three models are discussed. The tangential friction force cannot be ignored when an oblique impact occurs. In addition, the results obtained from the model proposed in this paper are more consistent with real movement.