The temperature distribution in the tool, chip and workpiece was studied during the orthogonal cuttingprocess Under several different cutting conditions. The temperature distribution is calculated by the finite differ...The temperature distribution in the tool, chip and workpiece was studied during the orthogonal cuttingprocess Under several different cutting conditions. The temperature distribution is calculated by the finite differencemethod. and the variation of the material properties with temperature was taken was taken into account The results obtained arecoincident with both previous published results and experimental measurements.展开更多
The miniaturisation context leads to the rise of micro-machining processes. Micro-milling is one of the most flexible and fast of them. Although it is based on the same principles as macro-cutting, it is not a simple ...The miniaturisation context leads to the rise of micro-machining processes. Micro-milling is one of the most flexible and fast of them. Although it is based on the same principles as macro-cutting, it is not a simple scaling-down of it. This down-sizing involves new phenomena in the chip formation, such as the minimum chip thickness below which no chip is formed. This paper presents a review of the current state of the art in this field from an experimental and a numerical point of view. A 2D finite element model is then developed to study the influence of the depth of cut on the chip formation. After the model validation in macro-cutting, it highlights the phenomena reported in literature and allows to perform a minimum chip thickness estimation.展开更多
The cutting performance of particle reinforced meta ll ic matrix composites (PRMMCs) SiC p/Al in ultrasonic vibration cutting and comm on cutting with carbide tools and PCD tools was experimentally researched in the p...The cutting performance of particle reinforced meta ll ic matrix composites (PRMMCs) SiC p/Al in ultrasonic vibration cutting and comm on cutting with carbide tools and PCD tools was experimentally researched in the paper. The changing rules of chip shape, deformation coefficient, shear angle a nd surface residual stress were presented by ultrasonic vibration cutting. Resul ts show: when adopting common cutting, spiral chip with smaller curl radius will be obtained. The chip with zigzag contour is short and thick. There are lots of sheet cracking both on the face of the chip and on the machined surface. That i s to say, the cutting process of metallic matrix composites(MMCs) is not all lik e the cutting process of plastic material. It is akin to the breaking process of brittle material. By comparison, when adopting ultrasonic cutting, because tool contacts with workpiece intermittently in high frequency, deformation of chip i s small, loose spiral chip with larger curl radius is long and thin. The phenome non is just similar to vibration cutting of plastic material. But the chip still belongs to plastic or semi-plastic segmental chip due to the structure charact eristics of the material itself. Furthermore, the tangential residual compressio n stress of vibration cutting is larger than that of common cutting, axial resid ual stress has a relation to the feed rate and residual stress does not changes obviously with cutting depth and they are in the same order of magnitude on the whole. According to the test result analyzing, the following conclusions are put forward: 1) The extruding deformation is serious in common cutting PRMMCs, defo rmation of it’s chip is larger, and the chip with lesser curl radius is short. Whereas, the deformation of chip in vibration cutting PRMMCs is lesser, the curl radius is bigger, and the loose chips are obtained at every turn. 2) The cuttin g deformation coefficient of chip in vibration cutting is lesser than that in co mmon cutting, however the shear angle is bigger. 3) The tangential residual compression stress of vibration cutting is larger than that of common cutting, a nd residual stress does not change obviously with cutting depth, they are in the same order of magnitude on the whole.展开更多
Cortical bone is semi-brittle and anisotropic,that brings a challenge to suppress vibration and avoid undesired fracture in precise cutting process in surgeries.In this paper,a novel analytical model is proposed to re...Cortical bone is semi-brittle and anisotropic,that brings a challenge to suppress vibration and avoid undesired fracture in precise cutting process in surgeries.In this paper,a novel analytical model is proposed to represent cortical bone cutting processes.The model is utilized to predict the chip formations,material removal behavior and cracks propagation under varying bone osteon cutting angles and depths.Series of orthogonal cutting experiments were conducted on cortical bone to investigate the impact of bone osteon cutting angle and depth of cut on cutting force,crack initialization and propagation.The observed chip morphology highly agreed with the prediction of chip formation based on the analytical model.The curly,serrated,grainy and powdery chips formed when the cutting angle was set as 0°,60°,90°,and 120°,respectively.Cortical bone were removed dominantly by shearing at a small depth of cut from 10 to 50μm,and by a mixture of pealing,shearing,fracture and crushing at a large depth of cut over 100μm at different bone osteon angles.Moreover,its fracture toughness was calculated based on measured cutting force.It is found that the fluctuation of cutting force is suppressed and the bone material becomes easy to remove,which attributes to lower fracture toughness at bone osteon cutting angle 0°.When the cutting direction develops a certain angle to bone osteon,the fracture toughness increases then the crack propagation is inhibited to some extent and the fluctuation of cutting force comparatively decreases.There is a theoretical and practical significance for tools design and operational parameters choice in surgeries.展开更多
文摘The temperature distribution in the tool, chip and workpiece was studied during the orthogonal cuttingprocess Under several different cutting conditions. The temperature distribution is calculated by the finite differencemethod. and the variation of the material properties with temperature was taken was taken into account The results obtained arecoincident with both previous published results and experimental measurements.
文摘The miniaturisation context leads to the rise of micro-machining processes. Micro-milling is one of the most flexible and fast of them. Although it is based on the same principles as macro-cutting, it is not a simple scaling-down of it. This down-sizing involves new phenomena in the chip formation, such as the minimum chip thickness below which no chip is formed. This paper presents a review of the current state of the art in this field from an experimental and a numerical point of view. A 2D finite element model is then developed to study the influence of the depth of cut on the chip formation. After the model validation in macro-cutting, it highlights the phenomena reported in literature and allows to perform a minimum chip thickness estimation.
文摘The cutting performance of particle reinforced meta ll ic matrix composites (PRMMCs) SiC p/Al in ultrasonic vibration cutting and comm on cutting with carbide tools and PCD tools was experimentally researched in the paper. The changing rules of chip shape, deformation coefficient, shear angle a nd surface residual stress were presented by ultrasonic vibration cutting. Resul ts show: when adopting common cutting, spiral chip with smaller curl radius will be obtained. The chip with zigzag contour is short and thick. There are lots of sheet cracking both on the face of the chip and on the machined surface. That i s to say, the cutting process of metallic matrix composites(MMCs) is not all lik e the cutting process of plastic material. It is akin to the breaking process of brittle material. By comparison, when adopting ultrasonic cutting, because tool contacts with workpiece intermittently in high frequency, deformation of chip i s small, loose spiral chip with larger curl radius is long and thin. The phenome non is just similar to vibration cutting of plastic material. But the chip still belongs to plastic or semi-plastic segmental chip due to the structure charact eristics of the material itself. Furthermore, the tangential residual compressio n stress of vibration cutting is larger than that of common cutting, axial resid ual stress has a relation to the feed rate and residual stress does not changes obviously with cutting depth and they are in the same order of magnitude on the whole. According to the test result analyzing, the following conclusions are put forward: 1) The extruding deformation is serious in common cutting PRMMCs, defo rmation of it’s chip is larger, and the chip with lesser curl radius is short. Whereas, the deformation of chip in vibration cutting PRMMCs is lesser, the curl radius is bigger, and the loose chips are obtained at every turn. 2) The cuttin g deformation coefficient of chip in vibration cutting is lesser than that in co mmon cutting, however the shear angle is bigger. 3) The tangential residual compression stress of vibration cutting is larger than that of common cutting, a nd residual stress does not change obviously with cutting depth, they are in the same order of magnitude on the whole.
基金China Scholarship Council,the National Natural Science Foundation of China(Grant No.52075161)Hunan Provincial Natural Science Foundation of China(Grant No.2022JJ40486)Changsha Municipal Natural Science Foundation of China(Grant No.2022cskj017).
文摘Cortical bone is semi-brittle and anisotropic,that brings a challenge to suppress vibration and avoid undesired fracture in precise cutting process in surgeries.In this paper,a novel analytical model is proposed to represent cortical bone cutting processes.The model is utilized to predict the chip formations,material removal behavior and cracks propagation under varying bone osteon cutting angles and depths.Series of orthogonal cutting experiments were conducted on cortical bone to investigate the impact of bone osteon cutting angle and depth of cut on cutting force,crack initialization and propagation.The observed chip morphology highly agreed with the prediction of chip formation based on the analytical model.The curly,serrated,grainy and powdery chips formed when the cutting angle was set as 0°,60°,90°,and 120°,respectively.Cortical bone were removed dominantly by shearing at a small depth of cut from 10 to 50μm,and by a mixture of pealing,shearing,fracture and crushing at a large depth of cut over 100μm at different bone osteon angles.Moreover,its fracture toughness was calculated based on measured cutting force.It is found that the fluctuation of cutting force is suppressed and the bone material becomes easy to remove,which attributes to lower fracture toughness at bone osteon cutting angle 0°.When the cutting direction develops a certain angle to bone osteon,the fracture toughness increases then the crack propagation is inhibited to some extent and the fluctuation of cutting force comparatively decreases.There is a theoretical and practical significance for tools design and operational parameters choice in surgeries.