In the present paper, we examine the performance of an efficient type of wave-absorbing porous marine structure under the attack of regular oblique waves by using a Multi-Domain Boundary Element Method(MDBEM). The str...In the present paper, we examine the performance of an efficient type of wave-absorbing porous marine structure under the attack of regular oblique waves by using a Multi-Domain Boundary Element Method(MDBEM). The structure consists of two perforated vertical thin barriers creating what can be called a wave absorbing chamber system. The barriers are surface piercing, thereby eliminating wave overtopping. The problem of the interaction of obliquely incident linear waves upon a pair of perforated barriers is first formulated in the context of linear diffraction theory. The resulting boundary integral equation, which is matched with far-field solutions presented in terms of analytical series with unknown coefficients, as well as the appropriate boundary conditions at the free surface, seabed, and barriers, is then solved numerically using MDBEM. Dissipation of the wave energy due to the presence of the perforated barriers is represented by a simple yet effective relation in terms of the porosity parameter appropriate for thin perforated walls. The results are presented in terms of reflection and transmission coefficients. The effects of the incident wave angles, relative water depths, porosities, depths of the walls, and other major parameters of interest are explored.展开更多
On the basis of a potential theory and Euler-Bernoulli beam theory, an analytical solution for oblique wave scattering by a semi-infinite elastic plate with finite draft floating on a step topography is developed usin...On the basis of a potential theory and Euler-Bernoulli beam theory, an analytical solution for oblique wave scattering by a semi-infinite elastic plate with finite draft floating on a step topography is developed using matched eigenfunction expansions. Different from previous studies, the effects of a wave incident angle, a plate draft, three different plate edge conditions (free, simply supported and built-in) and a sea-bottom topography are all taken into account. Moreover, the plate edge conditions are directly incorporated into linear algebraic equations for determining unknown expansion coefficients in velocity potentials, which leads to a simple and efficient solving procedure. Numerical results show that the convergence of the present solution is good, and an energy conservation relation is well satisfied. Also, the present predictions are in good agreement with known results for special cases. The effects of the wave incident angle, the plate draft, the plate edge conditions and the sea-bottom topography on various hydrodynamic quantities are analyzed. Some useful results are presented for engineering designs.展开更多
A three-dimensional numerical model based on the potential theory was developed to study the oblique wave action on vertical walls. A source term inside the domain was used to generate incident waves and outgoing wave...A three-dimensional numerical model based on the potential theory was developed to study the oblique wave action on vertical walls. A source term inside the domain was used to generate incident waves and outgoing waves were dissipated by sponge layers and transmitted by radiation boundaries. The finite difference method was used to solve the governing equations and boundary conditions in the regular transformed domain in σ-coordinate. Satisfactory agreements between the numerical predictions and experimental results of wave force were obtained. It is concluded that the maximum wave force acting on the vertical walls is induced by the obliquely incident waves rather than the normally incident waves.展开更多
This study examines oblique wave motion over multiple submerged porous bars in front of a vertical wall. Based on linear potential theory, an analytical solution for the present problem is developed using matched eige...This study examines oblique wave motion over multiple submerged porous bars in front of a vertical wall. Based on linear potential theory, an analytical solution for the present problem is developed using matched eigenfunction expansions. A complex dispersion relation is adopted to describe the wave elevation and energy dissipation over submerged porous bars. In the analytical solution, no limitations on the bar number, bar size, and spacing between adjacent bars are set. The convergence of the analytical solution is satisfactory, and the correctness of the analytical solution is confirmed by an independently developed multi-domain BEM (boundary element method) solution. Numerical examples are presented to examine the reflection and transmission coefficients of porous bars, CR and Cv, respectively, for engineering applications. The calculation results show that when the sum of widths for all the porous bars is fixed, increasing the bar number can significantly improve the sheltering function of the bars. Increasing the bar height can cause more wave energy dissipation and lower CR and Cr. The spacing between adjacent bars and the spacing between the last bar and the vertical wall are the key parameters affecting CR and Ct. The proposed analytical method may be used to analyze the hydrodynamic performance of submerged porous bars in preliminary engineering designs.展开更多
When the ship is sailing at sea,wave added resistance has great influence on the rapidity and economy of the ship.With the increasing pressure of energy and environmental protection,IMO has proposed the EEDI formula o...When the ship is sailing at sea,wave added resistance has great influence on the rapidity and economy of the ship.With the increasing pressure of energy and environmental protection,IMO has proposed the EEDI formula of the newly built ships,which restricts the energy consumption standard of civil ships more strictly.Therefore,a panel method based on three dimensional potential flow theory is proposed to study the problem of wave added resistance in this paper.Firstly,the method solves the motion responses of the ship in the time domain,and then calculates the wave added resistance of the ship by near-field pressure integration method.The wave added resistance of S175 container ship in head and oblique waves are calculated and compared with the experimental data,and the accuracy of the proposed method are verified.At last,the influence of Froude number and wave direction angle on wave added resistance is studied.The proposed method provides an approach of satisfactory accuracy and efficiency for the development of high-performance new ship forms,optimization of ship hull lines,comprehensive performance evaluation of ships and practical navigation guidance.展开更多
In this study, systematic physical model tests were performed to investigate the wave forces on the twin-plate breakwater under irregular waves. Based on the experimental results, the effects of the relative plate wid...In this study, systematic physical model tests were performed to investigate the wave forces on the twin-plate breakwater under irregular waves. Based on the experimental results, the effects of the relative plate width B/L,wave height Hs/D and incident angle θ0 on the wave forces were analyzed and discussed. The results showed that:(1) The envelopes of the total wave pressure were generally symmetrical along the direction of plate width under the incident angles(θ0) being 0°, 15°, 30°, 45° and 60°. In particular, the envelopes of wave pressure atθ0=30° were larger than all other cases.(2) The synchronous pressure distribution of the breakwater under oblique wave action was more complicated comparing to the normal incident waves.(3) Based on data analysis, an empirical formula was obtained to estimate the total vertical force of the twin-plate breakwater.This empirical formula can be a good reference for the design basis of engineering applications under specified wave conditions.展开更多
The present study deals with the oblique wave trapping by a surface-piercing flexible porous barrier near a rigid wall in the presence of step-type bottoms under the assumptions of small amplitude water waves and the ...The present study deals with the oblique wave trapping by a surface-piercing flexible porous barrier near a rigid wall in the presence of step-type bottoms under the assumptions of small amplitude water waves and the structural response theory in finite water depth.The modified mild-slope equation along with suitable jump conditions and the least squares approximation method are used to handle the mathematical boundary value problem.Four types of edge conditions,i.e.,clamped-moored,clamped-free,moored-free,and moored-moored,are considered to keep the barrier at a desired position of interest.The role of the flexible porous barrier is studied by analyzing the reflection coefficient,surface elevation,and wave forces on the barrier and the rigid wall.The effects of step-type bottoms,incidence angle,barrier length,structural rigidity,porosity,and mooring angle are discussed.The study reveals that in the presence of a step bottom,full reflection can be found periodically with an increase in(i)wave number and(ii)distance between the barrier and the rigid wall.Moreover,nearly zero reflection can be found with a suitable combination of wave and structural parameters,which is desirable for creating a calm region near a rigid wall in the presence of a step bottom.展开更多
The problem of oblique wave (internal wave) propagation over a small deformation in a channel flow consisting of two layers was considered. The upper fluid was assumed to be bounded above by a rigid lid, which is an...The problem of oblique wave (internal wave) propagation over a small deformation in a channel flow consisting of two layers was considered. The upper fluid was assumed to be bounded above by a rigid lid, which is an approximation for the free surface, and the lower one was bounded below by an impermeable bottom surface having a small deformation; the channel was unbounded in the horizontal directions. Assuming irrotational motion, the perturbation technique was employed to calculate the first-order corrections of the velocity potential in the two fluids by using Green's integral theorem suitably with the introduction of appropriate Green's functions. Those functions help in calculating the reflection and transmission coefficients in terms of integrals involving the shape ftmction c(x) representing the bottom deformation. Three-dimensional linear water wave theory was utilized for formulating the relevant boundary value problem. Two special examples of bottom deformation were considered to validate the results. Consideration of a patch of sinusoidal ripples (having the same wave number) shows that the reflection coefficient is an oscillatory function of the ratio of twice the x-component of the wave number to the ripple wave number. When this ratio approaches one, the theory predicts a resonant interaction between the bed and the interface, and the reflection coefficient becomes a multiple of the number of ripples. High reflection of incident wave energy occurs if this number is large. Similar results were observed for a patch of sinusoidal ripples having different wave numbers. It was also observed that for small angles of incidence, the reflected energy is greater compared to other angles of incidence up to π/ 4. These theoretical observations are supported by graphical results.展开更多
In this paper, domestic and abroad research progresses and related calculation formulae of the mean overtopping discharge are summarized. Through integral physical model experiments, the relation between the wave dire...In this paper, domestic and abroad research progresses and related calculation formulae of the mean overtopping discharge are summarized. Through integral physical model experiments, the relation between the wave direction and the overtopping discharge on the top of the sloping dike is focused on and put into analysis and discussion; and a modified formula for mean overtopping discharges under oblique irregular waves is proposed. The study shows that the mean overtopping discharge generally goes down as the relative wave obliquity fl increases for a fixed measurement point and the mean overtopping discharge generally increases as the wave steepness H/L decreases (the cycle increases) for a fixed relative wave obliquity.展开更多
Extensive 3-D model tests have been performed to study the effects of wave obliquity and multi-directionality on the wave loads acting on vertical breakwaters. The variation of horizontal and uplift forces acting on a...Extensive 3-D model tests have been performed to study the effects of wave obliquity and multi-directionality on the wave loads acting on vertical breakwaters. The variation of horizontal and uplift forces acting on an unit length of a breakwater with wave direction, the longitudinal distribution of wave forces, as well as the longitudinal load reduction are analyzed. Some empirical formulae of the longitudinal distribution coefficient and the longitudinal load reduction factor are presented for practical use.展开更多
The scattering of oblique incident surface waves by the edge of a small cylindrical deformation on a porous bed in an ocean of finite depth, is investigated here within the framework of linearized water wave theory. U...The scattering of oblique incident surface waves by the edge of a small cylindrical deformation on a porous bed in an ocean of finite depth, is investigated here within the framework of linearized water wave theory. Using perturbation analysis, the corresponding problem governed by modified Helmholtz equation is reduced to a boundary value problem for the first-order correction of the potential function. The first-order potential and, hence, the reflection and transmission coefficients are obtained by a method based on Green's integral theorem with the introduction of appropriate Green's function. Consideration of a patch of sinusoidal ripples shows that when the quotient of twice the component of the incident field wave number along x-direction and the ripple wave number approaches one, the theory predicts a resonant interaction between the bed and the free-surface, and the reflection coefficient becomes a multiple of the number of ripples. Again, for small angles of incidence, the reflected energy is more as compared to the other angles of incidence. It is also observed that the reflected energy is somewhat sensitive to the changes in the porosity of the ocean bed. From the derived results, the solutions for problems with impermeable ocean bed can be obtained as particular cases.展开更多
Oblique ocean wave damping by a vertical porous structure placed on a multi-step bottom topography is studied with the help of linear water wave theory. Some portion of the oblique wave, incident on the porous structu...Oblique ocean wave damping by a vertical porous structure placed on a multi-step bottom topography is studied with the help of linear water wave theory. Some portion of the oblique wave, incident on the porous structure, gets reflected by the multi-step bottom and the porous structure, and the rest propagates into the water medium following the porous structure. Two cases are considered: first a solid vertical wall placed at a finite distance from the porous structure in the water medium following the porous structure and then a special case of an unbounded water medium following the porous structure. In both cases, boundary value problems are set up in three different media, the first medium being water, the second medium being the porous structure consisting ofp vertical regions-one above each step and the third medium being water again. By using the matching conditions along the virtualvertical boundaries, a system of linear equations is deduced. The behavior of the reflection coefficient and the dimensionless amplitude of the transmitted progressive wave due to different relevant parameters are studied. Energy loss due to the propagation of oblique water wave through the porous structure is also carried out. The effects of various parameters, such as number of evanescent modes, porosity, friction factor, structure width, number of steps and angle of incidence, on the reflection coefficient and the dimensionless amplitude of the transmitted wave are studied graphically for both cases. Number of evanescent modes merely affects the scattering phenomenon. But higher values of porosity show relatively lower reflection than that for lower porosity. Oscillation in the reflection coefficient is observed for lower values of friction factor but it disappears with an increase in the value of friction factor. Amplitude of the transmitted progressive wave is independent of the porosity of the structure. But lower value of friction factor causes higher transmission. The investigation is then carried out for the second case, i.e., when the wall is absent. The significant difference between the two cases considered here is that the reflection due to a thin porous structure is very high when the solid wall exists as compared to the case when no wall is present. Energy loss due to different porosity, friction factor, structure width and angle of incidence is also examined. Validity of our model is ascertained by matching it with an available one.展开更多
Obliquely incident water wave scattering by an uneven channel-bed in the form of a small bottom undulation in a two-layer fluid is investigated within the frame work of three-dimensional linear water wave theory. The ...Obliquely incident water wave scattering by an uneven channel-bed in the form of a small bottom undulation in a two-layer fluid is investigated within the frame work of three-dimensional linear water wave theory. The upper fluid is assumed to be bounded above by a rigid lid, while the lower one is bounded below by a bottom surface having a small deformation and the channel is unbounded in the horizontal directions. Assuming irrotational motion, perturbation technique is employed to calculate the first-order corrections to the velocity potentials in the two fluids by using Fourier transform approximately, and also to calculate the reflection and transmission coefficients in terms of integrals involving the shape function representing the bottom deformation. Consideration of a patch of sinusoidal ripples shows that the reflection coefficient is an oscillatory function of the ratio of twice the component of the wave number along x-axis and the ripple wave number. When this ratio approaches one, the theory predicts a resonant interaction between the bed and interface, and the reflection coefficient becomes a multiple of the number of ripples. High reflection of incident wave energy occurs if this number is large.展开更多
A reliable numerical tool for the prediction of the parametric roll is important in the development of the second generation intact stability criteria.The main difficulty of the prediction of the parametric roll comes...A reliable numerical tool for the prediction of the parametric roll is important in the development of the second generation intact stability criteria.The main difficulty of the prediction of the parametric roll comes from the significant coupling of the roll with other motions,especially the heave and pitch motions.In this paper,the numerical method for determining the parametric roll is studied and the results are benchmarked against the model test data.Firstly,a 3 degrees-of-freedom(DOF)time domain hybrid panel method is validated by experimental data in regular oblique waves and irregular head waves.Secondly,the verified 3D O F method is extended to a fully coupled 6 DOF method with the course control.Finally,taking the C11 containership as the test case,the parametric roll in oblique waves is computed,and the effects of the surge,sway and yaw motions on the parametric roll are evaluated with the developed mathematical models.The results show that the effects of the surge and sway motions on the parametric roll is insignificant,while the effects of the yaw motion are more notable.The results of the roll amplitudes and the standard deviation of the roll angles show that the model based on 3 DOF gives relatively conservative results,and can be directly used for the stability assessment of the parametric roll.展开更多
The reflection of oblique incident waves from breakwaters with a partially-perforated front wall is investigated. The fluid domain is divided into two sub-domains and the eigenfunction expansion method is applied to e...The reflection of oblique incident waves from breakwaters with a partially-perforated front wall is investigated. The fluid domain is divided into two sub-domains and the eigenfunction expansion method is applied to expand velocity potentials in each domain. In the eigen-expansion of the velocity potential, evanescent waves are included. Numerical results of the present model are compared with experimental data. The effect of porosity, the relative chamber width, the relative water depth in the wave absorbing chamber and the water depth in front of the structure are discussed.展开更多
A simplified theoretic method and numerical simulations were carried out to investigate the characterization of propagation of transverse shock wave at wedge supported oblique detonation wave.After solution validation...A simplified theoretic method and numerical simulations were carried out to investigate the characterization of propagation of transverse shock wave at wedge supported oblique detonation wave.After solution validation,a criterion which is associated with the ratio Φ (u 2 /u CJ) of existence or inexistence of the transverse shock wave at the region of the primary triple was deduced systematically by 38 cases.It is observed that for abrupt oblique shock wave (OSW)/oblique detonation wave (ODW) transition,a transverse shock wave is generated at the region of the primary triple when Φ 〈 1,however,such a transverse shock wave does not take place for the smooth OSW/ODW transition when Φ 〉 1.The parameter Φ can be expressed as the Mach number behind the ODW front for stable CJ detonation.When 0.9 〈 Φ 〈 1.0,the reflected shock wave can pass across the contact discontinuity and interact with transverse waves which are originating from the ODW front.When 0.8 〈 Φ 〈 0.9,the reflected shock wave can not pass across the contact discontinuity and only reflects at the contact discontinuity.The condition (0.8 〈 Φ 〈 0.9) agrees well with the ratio (D ave /D CJ) in the critical detonation.展开更多
An oblique detonation wave for a Mach 7 inlet flow over a long enough wedge of 30 turning angle is simulated numerically using Euler equation and one-step rection model.The fifth-order WENO scheme is adopted to captur...An oblique detonation wave for a Mach 7 inlet flow over a long enough wedge of 30 turning angle is simulated numerically using Euler equation and one-step rection model.The fifth-order WENO scheme is adopted to capture the shock wave.The numerical results show that with the compression of the wedge wall the detonation wave front structure is divided into three sections:the ZND model-like strcuture,single-sided triple point structure and dual-headed triple point strucuture.The first structure is the smooth straight,and the second has the characteristic of the triple points propagating dowanstream only with the same velocity,while the dual-headed triple point structure is very complicated.The detonation waves facing upstream and downstream propagate with different velocities,in which the periodic collisions of the triple points cause the oscillation of the detonation wave front.This oscillation process has temporal and spatial periodicity.In addition,the triple point trace are recorded to obtain different cell structures in three sections.展开更多
Wave forces induced by the interaction between the oblique incident wave and the breakwater with a partially perforated front wall is investigated. The fluid domain is divided into two sub-domains and the eigen-functi...Wave forces induced by the interaction between the oblique incident wave and the breakwater with a partially perforated front wall is investigated. The fluid domain is divided into two sub-domains and the eigen-function expansion method is applied to expanding velocity potentials in each domain. In the eigen-expansion of the velocity potential, evanescent waves are included. Numerical results of the present model are compared with other theories and a good agreement can be found between them. Experimental data have been compared with the present theoretical results. The effect of the traverse wall on wave forces has been discussed in detail. On the basis of the linear wave theory, it is shown that in the range Of engineering practice, the incident angle of wave has small influence on wave forces on the unit length of perforated caisson.展开更多
Seismic stability of slopes has been traditionally analyzed with vertically propagated earthquake waves.However,for rock slopes,the earthquake waves might approach the outcrop still with a evidently oblique direction....Seismic stability of slopes has been traditionally analyzed with vertically propagated earthquake waves.However,for rock slopes,the earthquake waves might approach the outcrop still with a evidently oblique direction.To investigate the impact of obliquely incident earthquake excitations,the input method for SV and P waves with arbitrary incident angles is conducted,respectively,by adopting the equivalent nodal force method together with a viscous-spring boundary.Then,the input method is introduced within the framework of ABAQUS software and verified by a numerical example.Both SV and P waves input are considered herein for a 2 D jointed rock slope.For the jointed rock mass,the jointed material model in ABAQUS software is employed to simulate its behavior as a continuum.Results of the study show that the earthquake incident angles have significance on the seismic stability of jointed rock slopes.The larger the incident angle,the greater the risk of slope instability.Furthermore,the stability of the jointed rock slopes also is affected by wave types of earthquakes heavily.P waves induce weaker responses and SV waves are shown to be more critical.展开更多
The interaction of oblique incident water waves with a small bottom deformation on a porous ocean-bed is examined analytically here within the framework of linear water wave theory. The upper surface of the ocean is a...The interaction of oblique incident water waves with a small bottom deformation on a porous ocean-bed is examined analytically here within the framework of linear water wave theory. The upper surface of the ocean is assumed to be covered by an infinitely extended thin uniform elastic plate, while the lower surface is bounded by a porous bottom surface having a small deformation. By employing a simplified perturbation analysis, involving a small parameter c^(〈〈l ), which measures the smallness of the deformation, the governing Boundary Value Problem (BVP) is reduced to a simpler BVP for the first-order correction of the potential function. This BVP is solved using a method based on Green's integral theorem with the introduction of suitable Green's function to obtain the first-order potential, and this potential function is then utilized to calculate the first-order reflection and transmission coefficients in terms of integrals involving the shape function c(x) representing the bottom deformation. Consideration of a patch of sinusoidal ripples shows that when the quotient of twice the component of the incident field wave number propagating just below the elastic plate and the ripple wave number approaches one, the theory predicts a resonant interaction between the bed and the surface below the elastic plate. Again, for small angles of incidence, the reflected wave energy is more as compared to the other angles of incidence. It is also observed that the reflected wave energy is somewhat sensitive to the changes in the flexural rigidity of the elastic plate, the porosity of the bed and the ripple wave numbers. The main advantage of the present study is that the results for the values of reflection and transmission coefficients obtained are found to satisfy the energy-balance relation almost accurately.展开更多
文摘In the present paper, we examine the performance of an efficient type of wave-absorbing porous marine structure under the attack of regular oblique waves by using a Multi-Domain Boundary Element Method(MDBEM). The structure consists of two perforated vertical thin barriers creating what can be called a wave absorbing chamber system. The barriers are surface piercing, thereby eliminating wave overtopping. The problem of the interaction of obliquely incident linear waves upon a pair of perforated barriers is first formulated in the context of linear diffraction theory. The resulting boundary integral equation, which is matched with far-field solutions presented in terms of analytical series with unknown coefficients, as well as the appropriate boundary conditions at the free surface, seabed, and barriers, is then solved numerically using MDBEM. Dissipation of the wave energy due to the presence of the perforated barriers is represented by a simple yet effective relation in terms of the porosity parameter appropriate for thin perforated walls. The results are presented in terms of reflection and transmission coefficients. The effects of the incident wave angles, relative water depths, porosities, depths of the walls, and other major parameters of interest are explored.
基金The National Natural Science Foundation of China under contract Nos 51490675,51322903 and 51279224
文摘On the basis of a potential theory and Euler-Bernoulli beam theory, an analytical solution for oblique wave scattering by a semi-infinite elastic plate with finite draft floating on a step topography is developed using matched eigenfunction expansions. Different from previous studies, the effects of a wave incident angle, a plate draft, three different plate edge conditions (free, simply supported and built-in) and a sea-bottom topography are all taken into account. Moreover, the plate edge conditions are directly incorporated into linear algebraic equations for determining unknown expansion coefficients in velocity potentials, which leads to a simple and efficient solving procedure. Numerical results show that the convergence of the present solution is good, and an energy conservation relation is well satisfied. Also, the present predictions are in good agreement with known results for special cases. The effects of the wave incident angle, the plate draft, the plate edge conditions and the sea-bottom topography on various hydrodynamic quantities are analyzed. Some useful results are presented for engineering designs.
基金supported by the National Science Foundation of China for Distinguished Young Scholars under contract No.50025925the National Natural Science Foundation of China under contract No.50079001.
文摘A three-dimensional numerical model based on the potential theory was developed to study the oblique wave action on vertical walls. A source term inside the domain was used to generate incident waves and outgoing waves were dissipated by sponge layers and transmitted by radiation boundaries. The finite difference method was used to solve the governing equations and boundary conditions in the regular transformed domain in σ-coordinate. Satisfactory agreements between the numerical predictions and experimental results of wave force were obtained. It is concluded that the maximum wave force acting on the vertical walls is induced by the obliquely incident waves rather than the normally incident waves.
基金supported by the National Natural Science Foundation of China(Nos.51490675,51322903 and 51279224.)
文摘This study examines oblique wave motion over multiple submerged porous bars in front of a vertical wall. Based on linear potential theory, an analytical solution for the present problem is developed using matched eigenfunction expansions. A complex dispersion relation is adopted to describe the wave elevation and energy dissipation over submerged porous bars. In the analytical solution, no limitations on the bar number, bar size, and spacing between adjacent bars are set. The convergence of the analytical solution is satisfactory, and the correctness of the analytical solution is confirmed by an independently developed multi-domain BEM (boundary element method) solution. Numerical examples are presented to examine the reflection and transmission coefficients of porous bars, CR and Cv, respectively, for engineering applications. The calculation results show that when the sum of widths for all the porous bars is fixed, increasing the bar number can significantly improve the sheltering function of the bars. Increasing the bar height can cause more wave energy dissipation and lower CR and Cr. The spacing between adjacent bars and the spacing between the last bar and the vertical wall are the key parameters affecting CR and Ct. The proposed analytical method may be used to analyze the hydrodynamic performance of submerged porous bars in preliminary engineering designs.
基金the National Natural Science Foundation of China(Nos.51709246,52171280,51609220,U1806229)。
文摘When the ship is sailing at sea,wave added resistance has great influence on the rapidity and economy of the ship.With the increasing pressure of energy and environmental protection,IMO has proposed the EEDI formula of the newly built ships,which restricts the energy consumption standard of civil ships more strictly.Therefore,a panel method based on three dimensional potential flow theory is proposed to study the problem of wave added resistance in this paper.Firstly,the method solves the motion responses of the ship in the time domain,and then calculates the wave added resistance of the ship by near-field pressure integration method.The wave added resistance of S175 container ship in head and oblique waves are calculated and compared with the experimental data,and the accuracy of the proposed method are verified.At last,the influence of Froude number and wave direction angle on wave added resistance is studied.The proposed method provides an approach of satisfactory accuracy and efficiency for the development of high-performance new ship forms,optimization of ship hull lines,comprehensive performance evaluation of ships and practical navigation guidance.
基金The National Natural Science Foundation of China under contract Nos 51079025 and 11272079the Research Funds from State Key Laboratory of Coastal and Offshore Engineering under contract No.LY1602
文摘In this study, systematic physical model tests were performed to investigate the wave forces on the twin-plate breakwater under irregular waves. Based on the experimental results, the effects of the relative plate width B/L,wave height Hs/D and incident angle θ0 on the wave forces were analyzed and discussed. The results showed that:(1) The envelopes of the total wave pressure were generally symmetrical along the direction of plate width under the incident angles(θ0) being 0°, 15°, 30°, 45° and 60°. In particular, the envelopes of wave pressure atθ0=30° were larger than all other cases.(2) The synchronous pressure distribution of the breakwater under oblique wave action was more complicated comparing to the normal incident waves.(3) Based on data analysis, an empirical formula was obtained to estimate the total vertical force of the twin-plate breakwater.This empirical formula can be a good reference for the design basis of engineering applications under specified wave conditions.
文摘The present study deals with the oblique wave trapping by a surface-piercing flexible porous barrier near a rigid wall in the presence of step-type bottoms under the assumptions of small amplitude water waves and the structural response theory in finite water depth.The modified mild-slope equation along with suitable jump conditions and the least squares approximation method are used to handle the mathematical boundary value problem.Four types of edge conditions,i.e.,clamped-moored,clamped-free,moored-free,and moored-moored,are considered to keep the barrier at a desired position of interest.The role of the flexible porous barrier is studied by analyzing the reflection coefficient,surface elevation,and wave forces on the barrier and the rigid wall.The effects of step-type bottoms,incidence angle,barrier length,structural rigidity,porosity,and mooring angle are discussed.The study reveals that in the presence of a step bottom,full reflection can be found periodically with an increase in(i)wave number and(ii)distance between the barrier and the rigid wall.Moreover,nearly zero reflection can be found with a suitable combination of wave and structural parameters,which is desirable for creating a calm region near a rigid wall in the presence of a step bottom.
文摘The problem of oblique wave (internal wave) propagation over a small deformation in a channel flow consisting of two layers was considered. The upper fluid was assumed to be bounded above by a rigid lid, which is an approximation for the free surface, and the lower one was bounded below by an impermeable bottom surface having a small deformation; the channel was unbounded in the horizontal directions. Assuming irrotational motion, the perturbation technique was employed to calculate the first-order corrections of the velocity potential in the two fluids by using Green's integral theorem suitably with the introduction of appropriate Green's functions. Those functions help in calculating the reflection and transmission coefficients in terms of integrals involving the shape ftmction c(x) representing the bottom deformation. Three-dimensional linear water wave theory was utilized for formulating the relevant boundary value problem. Two special examples of bottom deformation were considered to validate the results. Consideration of a patch of sinusoidal ripples (having the same wave number) shows that the reflection coefficient is an oscillatory function of the ratio of twice the x-component of the wave number to the ripple wave number. When this ratio approaches one, the theory predicts a resonant interaction between the bed and the interface, and the reflection coefficient becomes a multiple of the number of ripples. High reflection of incident wave energy occurs if this number is large. Similar results were observed for a patch of sinusoidal ripples having different wave numbers. It was also observed that for small angles of incidence, the reflected energy is greater compared to other angles of incidence up to π/ 4. These theoretical observations are supported by graphical results.
基金supported by the National Key Research and Development Program of China(Grant Nos.2016YFC1402000 and 2016YFC1402002)the Special Funds Targeting at Industrial Scientific Researches for Public Welfare of Ministry of Water Resources(MWR)(Grant No.201401004)+3 种基金the National Natural Science Foundation of China(Grant No.51579156)the Major Project of Nanjing Hydraulic Research Institute Funds(Grant No.Y214009)the Jiangsu Province Hydraulic Science and Technology Projects(Grant No.2012001-8)the Jiangsu Province Hydraulic Science and Technology Projects(Grant No.2014048)
文摘In this paper, domestic and abroad research progresses and related calculation formulae of the mean overtopping discharge are summarized. Through integral physical model experiments, the relation between the wave direction and the overtopping discharge on the top of the sloping dike is focused on and put into analysis and discussion; and a modified formula for mean overtopping discharges under oblique irregular waves is proposed. The study shows that the mean overtopping discharge generally goes down as the relative wave obliquity fl increases for a fixed measurement point and the mean overtopping discharge generally increases as the wave steepness H/L decreases (the cycle increases) for a fixed relative wave obliquity.
文摘Extensive 3-D model tests have been performed to study the effects of wave obliquity and multi-directionality on the wave loads acting on vertical breakwaters. The variation of horizontal and uplift forces acting on an unit length of a breakwater with wave direction, the longitudinal distribution of wave forces, as well as the longitudinal load reduction are analyzed. Some empirical formulae of the longitudinal distribution coefficient and the longitudinal load reduction factor are presented for practical use.
基金partially supported by a research grant from Department of Science and Technology(DST),India(No.SB/FTP/MS-003/2013)
文摘The scattering of oblique incident surface waves by the edge of a small cylindrical deformation on a porous bed in an ocean of finite depth, is investigated here within the framework of linearized water wave theory. Using perturbation analysis, the corresponding problem governed by modified Helmholtz equation is reduced to a boundary value problem for the first-order correction of the potential function. The first-order potential and, hence, the reflection and transmission coefficients are obtained by a method based on Green's integral theorem with the introduction of appropriate Green's function. Consideration of a patch of sinusoidal ripples shows that when the quotient of twice the component of the incident field wave number along x-direction and the ripple wave number approaches one, the theory predicts a resonant interaction between the bed and the free-surface, and the reflection coefficient becomes a multiple of the number of ripples. Again, for small angles of incidence, the reflected energy is more as compared to the other angles of incidence. It is also observed that the reflected energy is somewhat sensitive to the changes in the porosity of the ocean bed. From the derived results, the solutions for problems with impermeable ocean bed can be obtained as particular cases.
文摘Oblique ocean wave damping by a vertical porous structure placed on a multi-step bottom topography is studied with the help of linear water wave theory. Some portion of the oblique wave, incident on the porous structure, gets reflected by the multi-step bottom and the porous structure, and the rest propagates into the water medium following the porous structure. Two cases are considered: first a solid vertical wall placed at a finite distance from the porous structure in the water medium following the porous structure and then a special case of an unbounded water medium following the porous structure. In both cases, boundary value problems are set up in three different media, the first medium being water, the second medium being the porous structure consisting ofp vertical regions-one above each step and the third medium being water again. By using the matching conditions along the virtualvertical boundaries, a system of linear equations is deduced. The behavior of the reflection coefficient and the dimensionless amplitude of the transmitted progressive wave due to different relevant parameters are studied. Energy loss due to the propagation of oblique water wave through the porous structure is also carried out. The effects of various parameters, such as number of evanescent modes, porosity, friction factor, structure width, number of steps and angle of incidence, on the reflection coefficient and the dimensionless amplitude of the transmitted wave are studied graphically for both cases. Number of evanescent modes merely affects the scattering phenomenon. But higher values of porosity show relatively lower reflection than that for lower porosity. Oscillation in the reflection coefficient is observed for lower values of friction factor but it disappears with an increase in the value of friction factor. Amplitude of the transmitted progressive wave is independent of the porosity of the structure. But lower value of friction factor causes higher transmission. The investigation is then carried out for the second case, i.e., when the wall is absent. The significant difference between the two cases considered here is that the reflection due to a thin porous structure is very high when the solid wall exists as compared to the case when no wall is present. Energy loss due to different porosity, friction factor, structure width and angle of incidence is also examined. Validity of our model is ascertained by matching it with an available one.
基金partially supported by a research grant from Department of Science and Technology(DST),India(No.SB/FTP/MS-003/2013)
文摘Obliquely incident water wave scattering by an uneven channel-bed in the form of a small bottom undulation in a two-layer fluid is investigated within the frame work of three-dimensional linear water wave theory. The upper fluid is assumed to be bounded above by a rigid lid, while the lower one is bounded below by a bottom surface having a small deformation and the channel is unbounded in the horizontal directions. Assuming irrotational motion, perturbation technique is employed to calculate the first-order corrections to the velocity potentials in the two fluids by using Fourier transform approximately, and also to calculate the reflection and transmission coefficients in terms of integrals involving the shape function representing the bottom deformation. Consideration of a patch of sinusoidal ripples shows that the reflection coefficient is an oscillatory function of the ratio of twice the component of the wave number along x-axis and the ripple wave number. When this ratio approaches one, the theory predicts a resonant interaction between the bed and interface, and the reflection coefficient becomes a multiple of the number of ripples. High reflection of incident wave energy occurs if this number is large.
基金Project supported by Ministry of Industry and Information Technology of China(Grant No.[2017]614).
文摘A reliable numerical tool for the prediction of the parametric roll is important in the development of the second generation intact stability criteria.The main difficulty of the prediction of the parametric roll comes from the significant coupling of the roll with other motions,especially the heave and pitch motions.In this paper,the numerical method for determining the parametric roll is studied and the results are benchmarked against the model test data.Firstly,a 3 degrees-of-freedom(DOF)time domain hybrid panel method is validated by experimental data in regular oblique waves and irregular head waves.Secondly,the verified 3D O F method is extended to a fully coupled 6 DOF method with the course control.Finally,taking the C11 containership as the test case,the parametric roll in oblique waves is computed,and the effects of the surge,sway and yaw motions on the parametric roll are evaluated with the developed mathematical models.The results show that the effects of the surge and sway motions on the parametric roll is insignificant,while the effects of the yaw motion are more notable.The results of the roll amplitudes and the standard deviation of the roll angles show that the model based on 3 DOF gives relatively conservative results,and can be directly used for the stability assessment of the parametric roll.
基金by Joint Fund of the National Natural Science Foundation of China the Hong Kong Science Research Bureau (49910161985)+1 种基金the National Natural Science Foundation of China (50025924,50179004)the Research Fund for the Development of harbor engineeri
文摘The reflection of oblique incident waves from breakwaters with a partially-perforated front wall is investigated. The fluid domain is divided into two sub-domains and the eigenfunction expansion method is applied to expand velocity potentials in each domain. In the eigen-expansion of the velocity potential, evanescent waves are included. Numerical results of the present model are compared with experimental data. The effect of porosity, the relative chamber width, the relative water depth in the wave absorbing chamber and the water depth in front of the structure are discussed.
文摘A simplified theoretic method and numerical simulations were carried out to investigate the characterization of propagation of transverse shock wave at wedge supported oblique detonation wave.After solution validation,a criterion which is associated with the ratio Φ (u 2 /u CJ) of existence or inexistence of the transverse shock wave at the region of the primary triple was deduced systematically by 38 cases.It is observed that for abrupt oblique shock wave (OSW)/oblique detonation wave (ODW) transition,a transverse shock wave is generated at the region of the primary triple when Φ 〈 1,however,such a transverse shock wave does not take place for the smooth OSW/ODW transition when Φ 〉 1.The parameter Φ can be expressed as the Mach number behind the ODW front for stable CJ detonation.When 0.9 〈 Φ 〈 1.0,the reflected shock wave can pass across the contact discontinuity and interact with transverse waves which are originating from the ODW front.When 0.8 〈 Φ 〈 0.9,the reflected shock wave can not pass across the contact discontinuity and only reflects at the contact discontinuity.The condition (0.8 〈 Φ 〈 0.9) agrees well with the ratio (D ave /D CJ) in the critical detonation.
基金supported by the National Natural Science Foundation of China (10872096)the Open Fund of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology (KFJJ09-13)
文摘An oblique detonation wave for a Mach 7 inlet flow over a long enough wedge of 30 turning angle is simulated numerically using Euler equation and one-step rection model.The fifth-order WENO scheme is adopted to capture the shock wave.The numerical results show that with the compression of the wedge wall the detonation wave front structure is divided into three sections:the ZND model-like strcuture,single-sided triple point structure and dual-headed triple point strucuture.The first structure is the smooth straight,and the second has the characteristic of the triple points propagating dowanstream only with the same velocity,while the dual-headed triple point structure is very complicated.The detonation waves facing upstream and downstream propagate with different velocities,in which the periodic collisions of the triple points cause the oscillation of the detonation wave front.This oscillation process has temporal and spatial periodicity.In addition,the triple point trace are recorded to obtain different cell structures in three sections.
基金This project was supported by the Research Fund for the Development of Harbor Engineering Design Specification,the Ministry of Communications of Chinathe Program for Changjiang Scholars and Innovation Research Team in University of China under contract No.IRT0420the Fok Ying Tung Education Foundation of China under contract No.81068.
文摘Wave forces induced by the interaction between the oblique incident wave and the breakwater with a partially perforated front wall is investigated. The fluid domain is divided into two sub-domains and the eigen-function expansion method is applied to expanding velocity potentials in each domain. In the eigen-expansion of the velocity potential, evanescent waves are included. Numerical results of the present model are compared with other theories and a good agreement can be found between them. Experimental data have been compared with the present theoretical results. The effect of the traverse wall on wave forces has been discussed in detail. On the basis of the linear wave theory, it is shown that in the range Of engineering practice, the incident angle of wave has small influence on wave forces on the unit length of perforated caisson.
基金National Basic Research Program of China under Grant No.2015CB057902Beijing Municipal Natural Science Foundation under Grant No.8164049Young Foundation of the National Science of China under Grant No.51608015
文摘Seismic stability of slopes has been traditionally analyzed with vertically propagated earthquake waves.However,for rock slopes,the earthquake waves might approach the outcrop still with a evidently oblique direction.To investigate the impact of obliquely incident earthquake excitations,the input method for SV and P waves with arbitrary incident angles is conducted,respectively,by adopting the equivalent nodal force method together with a viscous-spring boundary.Then,the input method is introduced within the framework of ABAQUS software and verified by a numerical example.Both SV and P waves input are considered herein for a 2 D jointed rock slope.For the jointed rock mass,the jointed material model in ABAQUS software is employed to simulate its behavior as a continuum.Results of the study show that the earthquake incident angles have significance on the seismic stability of jointed rock slopes.The larger the incident angle,the greater the risk of slope instability.Furthermore,the stability of the jointed rock slopes also is affected by wave types of earthquakes heavily.P waves induce weaker responses and SV waves are shown to be more critical.
基金Partially Supported by a Research from Department of Science and Technology(DST),India under Grant No.SB/FTP/MS-003/2013
文摘The interaction of oblique incident water waves with a small bottom deformation on a porous ocean-bed is examined analytically here within the framework of linear water wave theory. The upper surface of the ocean is assumed to be covered by an infinitely extended thin uniform elastic plate, while the lower surface is bounded by a porous bottom surface having a small deformation. By employing a simplified perturbation analysis, involving a small parameter c^(〈〈l ), which measures the smallness of the deformation, the governing Boundary Value Problem (BVP) is reduced to a simpler BVP for the first-order correction of the potential function. This BVP is solved using a method based on Green's integral theorem with the introduction of suitable Green's function to obtain the first-order potential, and this potential function is then utilized to calculate the first-order reflection and transmission coefficients in terms of integrals involving the shape function c(x) representing the bottom deformation. Consideration of a patch of sinusoidal ripples shows that when the quotient of twice the component of the incident field wave number propagating just below the elastic plate and the ripple wave number approaches one, the theory predicts a resonant interaction between the bed and the surface below the elastic plate. Again, for small angles of incidence, the reflected wave energy is more as compared to the other angles of incidence. It is also observed that the reflected wave energy is somewhat sensitive to the changes in the flexural rigidity of the elastic plate, the porosity of the bed and the ripple wave numbers. The main advantage of the present study is that the results for the values of reflection and transmission coefficients obtained are found to satisfy the energy-balance relation almost accurately.