In recent years, radio occultation (RO) technology making use of global positioning system (GPS) signals has been exploited to obtain profiles of atmospheric parameters in the neutral atmosphere. In this paper, th...In recent years, radio occultation (RO) technology making use of global positioning system (GPS) signals has been exploited to obtain profiles of atmospheric parameters in the neutral atmosphere. In this paper, the RO refractivity profiles obtained from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) mission are statistically compared with the observations of 38 radiosonde stations provided by the Australian Bureau of Meteorology during the period from 15 July 2006 through 15 July 2007. Different collocation criteria are compared at first, and COSMIC RO soundings that occur within 3 hours and 300 km of radiosonde measurements are used for the final statistical comparison. The overall results show that the agreements between the COSMIC refractivity profiles and the radiosonde soundings from the 38 stations are very good at 0-30 km altitude, with mean absolute relative refractivity deviations of less than 0.5%. Latitudinal comparisons indicate that there are negative refractivity deviations in the lower troposphere over the low latitude and middle latitude regions and large standard deviations exist in the lower troposphere of low latitude regions, which can reach up to ~6%. The comparisons of COSMIC RO refractivity profiles and radiosonde observations for 3 polar stations in four different seasons indicate that the accuracy of GPS RO profiles is better in the Austral summer and autumn than in the Austral spring and winter during the year from September 2006 to August 2007.展开更多
A new method applying an artificial neural network (ANN) to retrieve water vapor profiles in the troposphere is presented. In this paper, a fully-connected, three-layer network based on the backpropagation algorithm...A new method applying an artificial neural network (ANN) to retrieve water vapor profiles in the troposphere is presented. In this paper, a fully-connected, three-layer network based on the backpropagation algorithm is constructed. Month, latitude, altitude and bending angle are chosen as the input vectors and water vapor pressure as the output vector. There are 130 groups of occultation measurements from June to November 2002 in the dataset. Seventy pairs of bending angles and water vapor pressure profiles are used to train the ANN, and the sixty remaining pairs of profiles are applied to the validation of the retrieval. By comparing the retrieved profiles with the corresponding ones from the Information System and Data Center of the Challenging Mini-Satellite Payload for Geoscientific Research and Application (CHAMP-ISDC), it can be concluded that the ANN is relatively convenient and accurate. Its results can be provided as the first guess for the iterative methods or the non-linear optimal estimation inverse method.展开更多
The Martian ionosphere is produced by a number of controlling processes, including solar extreme ultraviolet radiation (EUV) and X-ray ionization, impact ionization by precipitating electrons, and day-to-night transpo...The Martian ionosphere is produced by a number of controlling processes, including solar extreme ultraviolet radiation (EUV) and X-ray ionization, impact ionization by precipitating electrons, and day-to-night transport. This study investigates the structural variability of the Martian ionosphere with the aid of the radio occultation (RO) experiments made on board the recent Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft. On the dayside, the RO electron density profiles are described by the superposition of two Chapman models, representing the contributions from both the primary layer and the low-altitude secondary layer. The inferred subsolar peak electron densities and altitudes are 1.24×10^5 cm^-3 and 127 km for the former, and 4.28×10^4 cm^-3 and 97 km for the latter, respectively, in general agreement with previous results appropriate for the low solar activity conditions. Our results strengthen the role of solar EUV and X-ray ionization as the driving source of plasma on the dayside of Mars. Beyond the terminator, a systematic decline in ionospheric total electron content is revealed by the MAVEN RO measurements made from the terminator crossing up to a solar zenith angle of 120°. Such a trend is indicative of day-to-night plasma transport as an important source for the nightside Martian ionosphere.展开更多
The temporal distribution characteristics of COSMIC occultation data are analyzed in detail, and the limitations in earthquake-ionosphere anomaly detection caused by the temporal distribution characteristics of COSMIC...The temporal distribution characteristics of COSMIC occultation data are analyzed in detail, and the limitations in earthquake-ionosphere anomaly detection caused by the temporal distribution characteristics of COSMIC occultation data are discussed using the example of the Wenchuan earthquake. The results demonstrate that there is no fixed temporal resolution for COSMIC occultation data when compared with other ionospheric observation techniques. Therefore, occultation data cannot currently be independently utilized in research studies but can only be used as a complement to other ionospheric observation techniques for applications with high temporal resolution demands, such as earthquake-ionosphere anomaly detection.展开更多
The electromagnetic satellite Zhangheng 01(ZH-01) was successfully launched on February 2, 2018. The GNSS Radio Occultation(GRO) receiver on board the satellite is able to observe the occultation events of GPS and Bei...The electromagnetic satellite Zhangheng 01(ZH-01) was successfully launched on February 2, 2018. The GNSS Radio Occultation(GRO) receiver on board the satellite is able to observe the occultation events of GPS and BeiDou navigation satellites. We analyzed the data acquired during the in-orbit testing period. We concludes that the GRO ionosphere inversion results are reasonable,the trend is correct, the satellite can observe about 600 ionosphere occultation events each day. The global coverage of more than 30000 consecutive GRO events in more than two months were analyzed and compared with COSMIC observations: both the GRO and COSMIC occultation can realize global coverage: the Nm F2 and Hm F2 global distributions are similar and change obviously with latitude. We used three digisondes at different latitudes to analyze and compare the spatio-temporally consistent GRO data: the RMSE of GRO Nm F2 relative to digisonde is better than 9.41%, the correlation coefficient is better than 0.8682: the relative RMSE of Hm F2 is better than 7.80% and the correlation coefficient is better than 0.7066.展开更多
Atmospheric stellar occultation observation technology is an advanced space-based detection technology that can measure the vertical distribution of trace gas composition,temperature,and aerosol content in a planet’s...Atmospheric stellar occultation observation technology is an advanced space-based detection technology that can measure the vertical distribution of trace gas composition,temperature,and aerosol content in a planet’s atmosphere.In this study,an inversion algorithm of the onion-peeling method was constructed to invert the transmittance obtained from the forward mask.The method used a three-dimensional ray-tracing simulation to obtain the transmission path of the light in the Earth’s atmosphere.The relevant parameters were then combined in the high-resolution transmission molecular absorption(HITRAN)database,and line-by-line integration was performed to calculate the atmospheric transmittance.The transmittance value was then used as an input to calculate the vertical distribution of oxygen molecules when using the single-wavelength inversion of the onion-peeling method.Finally,the oxygen molecule content was compared with the value attained by the Mass Spectrometer and Incoherent Scatter Radar Extended(MSISE00)atmospheric model to determine the relative error of our model.The maximum error was found to be 0.3%,which is low enough to verify the reliability of our algorithm.Using Global-scale Observations of the Limb and Disk(GOLD)measured data to invert the oxygen number density,we calculated its relative deviation from the published result to further verify the algorithm.The inversion result was affected by factors such as prior data,the absorption spectral line type,the ellipticity of the Earth,and the accuracy of the orbit.Analysis of these error-influencing factors showed that the seasons and the Earth’s ellipticity affected the accuracy of the model only 0.001%and could therefore be ignored.However,latitude and solar activity had a greater impact on accuracy,on the order of 0.1%.The absorption line type affected the accuracy of the model by as much as 1%.All three of these factors therefore need to be considered during the inversion process.展开更多
Electron density is a key parameter to characterize Martian ionospheric structure and dynamics. Based on the ephemeris and auxiliary information derived from the Spacecraft, Planet, Instruments, C-matrix, and Events(S...Electron density is a key parameter to characterize Martian ionospheric structure and dynamics. Based on the ephemeris and auxiliary information derived from the Spacecraft, Planet, Instruments, C-matrix, and Events(SPICE) toolkit, we calculated the bending angle of signal path from the frequency residuals measured by the Mars Express Radio Science Experiment(Ma RS) of the Mars Express(MEX) mission under the assumption of a spherically symmetric ionosphere. We stratified the ionosphere into layers and assumed a linear change of bending angle between layers, to derive profiles in radial distance of refractivity with the optimized parameters of upper integral limit of 4890 km and baseline correction boundary of 3690 km. Meanwhile, we also compared the retrieved electron density profiles between the frequency residuals of the single-frequency and differential Doppler of the dual-frequency. In total, ~640 electron density profiles of Martian ionosphere between April 2004 and April 2015 were retrieved successfully. There are 24 profiles identified manually that exhibit an additional sporadic layer occurrence below the normal two-layers. We also found that the peak altitude of this layer increases with the main peak altitude.展开更多
We describe and analyze observations of mutual events of Galilean satellites made at the Yunnan Observatory in February 2003 from CCD imaging for the first time in China. Astrometric positions were deduced from these ...We describe and analyze observations of mutual events of Galilean satellites made at the Yunnan Observatory in February 2003 from CCD imaging for the first time in China. Astrometric positions were deduced from these photometric observations by modelling the relative motion and the photometry of the involved satellites during each event.展开更多
The Gravity waves activities in the Tibetan Plateau are very complex with different effects and natures that are not clear due to the lack of high resolution data from space and also from ground. In this paper,using C...The Gravity waves activities in the Tibetan Plateau are very complex with different effects and natures that are not clear due to the lack of high resolution data from space and also from ground. In this paper,using COSMICGPS radio occultation data from 2006 to 2014, the atmospheric gravity waves activities and climatologic behaviors in Tibetan stratosphere are studied and analyzed, which show different characteristics. Most of the gravity waves with potential energy(Ep) at altitude of 17-24 km are associated with mountain waves. A good correlation between gravity wave activities and zonal wind flow is found. The distribution of gravity wave(GW) activities in Tibet is strongly connected with zonal wind variation and topography. GW activities are enhanced in winter seasons and decreased in summer seasons since strong western winds persist at all heights of the Tibetan troposphere. The gravity waves generated in the Tibetan area are mostly related to the orography of the area. The vertical wavelengths of GWS are shorter.Gravity waves in the Northwest have different vertical wavelengths in the Southeastern part of Tibetan Plateau, and dominant wavelengths are 3-5 km in the Northwest and 2-3 km in the Southeast,respectively. In the summer, the Northwestern part is the main source of wave generation while in the winter the GW is generated almost from all peaks of the Tibetan Plateau. Gravity waves in the region are clearly related to deep convection, which can also be proved by the inverse relation of Outgoing long wave radiation(OLR) and potential energy(Ep).展开更多
Focusing on carrying out GPS occultation observat io ns with a receiver set on LEO satellite, this paper develops the LEO orbit simul ation system based on which the occultation events can be simulated taking into acc...Focusing on carrying out GPS occultation observat io ns with a receiver set on LEO satellite, this paper develops the LEO orbit simul ation system based on which the occultation events can be simulated taking into account the geometric relationship of the satellites and the field of view of th e receiver antenna. In this paper, the impacts of 4 types of LEO orbit parameter s including argument of latitude (AOL), right ascension of ascending node (RAAN) , orbit height and orbit inclination on the distribution and number of occultati on events observed with a single LEO satellite are discussed through simulat ion and some conclusions are drawn.展开更多
Global Navigation Satellite System (GNSS) radio occultation measurements have been assimilated into the four- dimensional variational data assimilation system (YH4DVAR) using a one-dimensional bending angle operat...Global Navigation Satellite System (GNSS) radio occultation measurements have been assimilated into the four- dimensional variational data assimilation system (YH4DVAR) using a one-dimensional bending angle operator (GBAO) as a new type of observation. For the sake of verifying the impact of GNSS radio occultation (RO) measurements to the data assimilation system, three experiments have been conducted. The statistical results of the analysis error experiment and forecast skill experiment show that the GNSS RO measurements have an impact on the analysis system. The typhoon forecast experiment shows the impact on the important weather process. They all have a positive impact on the weather forecast. Lastly, we look forward to future work on the observation system simulation experiment (OSSE) to investigate the impact of GNSS RO measurements as a function of observation number, which is an effective method to estimate the saturation of the observation number.展开更多
By using observed CHAMP orbit ephemeredes and MSISE90 dry air model and regarding the earth as a sphere and an ellipsoid respectively, phase delays are simulated and the simulated data are retrieved under different sc...By using observed CHAMP orbit ephemeredes and MSISE90 dry air model and regarding the earth as a sphere and an ellipsoid respectively, phase delays are simulated and the simulated data are retrieved under different schemes. The comparison between the inverted temperature profiles and the model temperature profiles shows that by inverting observed data, we will get temperature results with large errors if the effect of Earth’s oblateness is omitted. The correction method is proved to be effective because the temperature errors decreased obviously with this method.展开更多
Extracting and parameterizing ionospheric waves globally and statistically is a longstanding problem. Based on the multichannel maximum entropy method(MMEM) used for studying ionospheric waves by previous work, we c...Extracting and parameterizing ionospheric waves globally and statistically is a longstanding problem. Based on the multichannel maximum entropy method(MMEM) used for studying ionospheric waves by previous work, we calculate the parameters of ionospheric waves by applying the MMEM to numerously temporally approximate and spatially close global-positioning-system radio occultation total electron content profile triples provided by the unique clustered satellites flight between years 2006 and 2007 right after the constellation observing system for meteorology, ionosphere, and climate(COSMIC) mission launch. The results show that the amplitude of ionospheric waves increases at the low and high latitudes(~0.15 TECU) and decreases in the mid-latitudes(~0.05 TECU). The vertical wavelength of the ionospheric waves increases in the mid-latitudes(e.g., ~50 km at altitudes of 200–250 km) and decreases at the low and high latitudes(e.g., ~35 km at altitudes of 200–250 km).The horizontal wavelength shows a similar result(e.g., ~1400 km in the mid-latitudes and ~800 km at the low and high latitudes).展开更多
The tropopause is a transitional layer between the troposphere and the stratosphere. The exchange of chemical constituents of the atmosphere (namely masses of air, water vapor, trace gases etc.) and energy between the...The tropopause is a transitional layer between the troposphere and the stratosphere. The exchange of chemical constituents of the atmosphere (namely masses of air, water vapor, trace gases etc.) and energy between the troposphere and the stratosphere occurs through this layer. We suppose that just exchanges that are taking place at the tropopause heights are strongly influenced by the Global Change forcing. For this reason it is particularly urgent to accumulate temporal data the most accurate possible and with a certain continuity series to understand comprehensively what is happening to our climate. It is well known that Radio Occultation technique applied using Global Navigations Satellite Systems (GNSS-RO) is a powerful tool to detect the tropopause heights. It can be done working on the level 2 data provided by GNSS-RO payload: i.e. atmospheric profiles of pressure and temperature. We propose to measure tropopause using GNSS-RO level 1 data;i.e. the bending angles (BA) of the GNSS signal through the atmosphere. We fit the BA profiles applying in the integral relationship of BA as refractivity profile of background the Hopfield dry model of atmosphere which depends on the fourth degree of the height above the Earth. Through the layers in which tropopause is contained, the residuals between the background model and the observed BA have an anomalous trend. The residuals in this zone form anomalous non-gaussian bumps that we have exploited just to determine the relevant parameters of the tropopause. Such bumps are due to the wrong theoretical assumption made by Hopfield for the re-construction of the dry refractivity that the temperature lapse rate of the atmosphere is constant. But we know that the definition of tropopause according the World Meteorological Organization (WMO) is just the height where a sudden change of the temperature lapse rate usually occurs. Thus in the present work we have determined tropopause heights with new algorithms which exploit the bumps occurring along the BA profiles achieved by GNSS-RO. We have used the huge amount of data provided by several space missions devoted to GNSS-RO (namely COSMIC, METOP, etc.) for tuning the algorithms, performed a validation and provided a robust statistical soundness. The same GNSS-RO observations are helpful also to reconstruct the Mapping Function commonly applied in geodetic applications. Global mapping functions built with GNSS-RO and their evolution in time can be an interesting parameter helpful for climate investigations as well.展开更多
Lunar occultation observations are useful in refining lunar limb profiles, which will be used for the analysis of solar eclipse observations to detect the variation of the solar diameter, and in detecting the possible...Lunar occultation observations are useful in refining lunar limb profiles, which will be used for the analysis of solar eclipse observations to detect the variation of the solar diameter, and in detecting the possible errors of the Hipparcos proper motion system. Many lunar occultations have been observed in Japan. Some of the results are shown in this paper to encourage people in the world to observe more lunar occultations with better accuracies.展开更多
A lunar occultation (LO) technique in the near-infrared (NIR) provides angular resolution down to milliarcseconds for an occulted source, even with ground- based 1 m class telescopes. LO observations are limited t...A lunar occultation (LO) technique in the near-infrared (NIR) provides angular resolution down to milliarcseconds for an occulted source, even with ground- based 1 m class telescopes. LO observations are limited to brighter objects because they require a high signal-to-noise ratio (S/N ~40) for proper extraction of angular diameter values. Hence, methods to improve the S/N ratio by reducing noise using Fourier and wavelet transforms have been explored in this study. A sample of 54 NIR LO light curves observed with the IR camera at Mt Abu Observatory has been used. It is seen that both Fourier and wavelet methods have shown an improvement in S/N compared to the original data. However, the application of wavelet transforms causes a slight smoothing of the fringes and results in a higher value for angular diameter. Fourier transforms which reduce discrete noise frequencies do not distort the fringe. The Fourier transform method seems to be effective in improving the S/N, as well as improving the model fit, particularly in the fainter regime of our sample. These methods also provide a better model fit for brighter sources in some cases, though there may not be a significant imorovement in S/N.展开更多
A 3-D shape model of the sixth largest of the main belt asteroids, (704) Interamnia, is presented. The model is reproduced from its two stellar occultation observations and six lightcurves between 1969 and 2011. The f...A 3-D shape model of the sixth largest of the main belt asteroids, (704) Interamnia, is presented. The model is reproduced from its two stellar occultation observations and six lightcurves between 1969 and 2011. The first stellar occultation was the occultation of TYC 234500183 on 1996 December 17 observed from 13 sites in the USA. An elliptical cross section of (344.6 ± 9.6 km) × (306.2 ± 9.1 km), for position angle P = 73.4 ± 12.5° was fitted. The lightcurve around the occultation shows that the peak-to-peak amplitude was 0.04 mag. and the occultation phase was just before the minimum. The second stellar occultation was the occultation of HIP 036189 on 2003 March 23 observed from 39 sites in Japan and Hawaii. An elliptical cross section of (349.8 ± 0.9 km) × (303.7 ± 1.7 km), for position angle P = 86.0 ± 1.1° was fitted. A companion of 8.5 mag. of the occulted star was discovered whose separation is 12 ± 2 mas (milli-arcseconds), P = 148 ± 11°. A combined analysis of rotational lightcurves and occultation chords can return more information than can be obtained with either technique alone. From follow-up photometric observations of the asteroid between 2003 and 2011, its rotation period is determined to be 8.728967167 ± 0.00000007 hours, which is accurate enough to fix the rotation phases at other occultation events. The derived north pole is λ2000 = 259 ± 8°, β2000 = -50 ± 5° (retrograde rotation);the lengths of the three principal axes are 2a = 361.8 ± 2.8 km, 2b = 324.4 ± 5.0 km, 2c = 297.3 ± 3.5 km, and the mean diameter is D = 326.8 ± 3.0 km. Supposing the mass of Interamnia as (3.5 ± 0.9) × 10-11 solar masses, the density is then ρ = 3.8 ± 1.0 g·cm-3.展开更多
This paper investigates the total electron content (TEC) which is a major challenge to space and related industries, most especially in an equatorial region like Thailand within the geographical latitude 07°35...This paper investigates the total electron content (TEC) which is a major challenge to space and related industries, most especially in an equatorial region like Thailand within the geographical latitude 07°35'N - 20°17'N. This research was achieved using radio occultation data from COSMIC mission. The monthly, seasonal and annual TEC and electron density variation monitoring conducted during increasing solar activity from 2010 to 2013 due to changes and instability of ionospheric parameters. It was observed that electron density and TEC was predominant in summer season. Summer has the highest electron density and TEC values all through and the annual mean values keep on increasing within the period under consideration. In conclusion, ionospheric fluctuations and perturbations were observed to be at pick between the months of March and May. The results of the study demonstrated that ionospheric irregularities were steadily on the increase, confirming 24th solar cycle prediction by NASA and depended on many factors among the major ones which are located on the latitude, season and solar activity.展开更多
Internal gravity waves(IGWs)are critical in driving Martian atmospheric motion and phenomena.This study investigates Martian IGWs by using high-resolution data from China’s Tianwen-1 mission and the National Aeronaut...Internal gravity waves(IGWs)are critical in driving Martian atmospheric motion and phenomena.This study investigates Martian IGWs by using high-resolution data from China’s Tianwen-1 mission and the National Aeronautics and Space Administration’s Mars Global Surveyor(MGS)by the radio occultation(RO)technique.Key IGW parameters,such as vertical and horizontal wavelengths,intrinsic frequency,and energy density,are extracted based on vertical temperature profiles from the Martian surface to~50 km altitude.Data reveal that the Martian IGWs are predominantly small-scale waves,with vertical wavelengths between 6 and 13 km and horizontal wavelengths extending to thousands of kilometers.These waves propagate almost vertically and exhibit low intrinsic frequencies close to the inertial frequency,with the characteristic of low-frequency inertial IGWs.Tianwen-1 data indicate stronger IGW activity,higher energy density,and less dissipation than MGS data in the northern hemisphere.Moreover,MGS data in the southern hemisphere show higher buoyancy frequencies and lower vertical wavelengths,suggesting more stable atmospheric conditions conducive to IGW propagation.These extracted IGW characteristics can enhance our understanding of the atmospheric dynamics on Mars and contribute valuable information for parameterization in global circulation models.展开更多
The newly launched Fengyun-3D(FY-3D)satellite carries microwave temperature sounder(MWTS)and microwave humidity sounder(MWHS),providing the global atmospheric temperature and humidity measurements.It is important to a...The newly launched Fengyun-3D(FY-3D)satellite carries microwave temperature sounder(MWTS)and microwave humidity sounder(MWHS),providing the global atmospheric temperature and humidity measurements.It is important to assess the in orbit performance of MWTS and MWHS and understand their calibration accuracy before using them in numerical weather prediction and many other applications such as hurricane monitoring.This study aims at quantifying the biases of MWTS and MWHS observations relative to the simulations from the collocated Global Positioning System(GPS)radio occultation(RO)data.Using the collocated FY-3C Global Navigation Satellite System Occultation Sounder(GNOS)RO data under clear-sky conditions as inputs to Community Radiative Transfer Model(CRTM),brightness temperatures and viewing angles are simulated for the upper level sounding channels of MWTS and MWHS.In order to obtain O–B statistics under clear sky conditions,a cloud detection algorithm is developed by using the two MWTS channels with frequencies at 50.3 and 51.76 GHz and the two MWHS channels with frequencies centered at 89 and 150 GHz.The analysis shows that for the upper air sounding channels,the mean biases of the MWTS observations relative to the GPS RO simulations are negative for channels 5–9,with absolute values<1 K,and positive for channels 4 and 10,with values<0.5 K.For the MWHS observations,the mean biases in brightness temperature are negative for channels 2–6,with absolute values<2.6 K and relatively small standard deviations.The mean biases are also negative for channels 11–13,with absolute values<1.3 K,but with relatively large standard deviations.The biases of both MWTS and MWHS show scan-angle dependence and are asymmetrical across the scan line.The biases for the upper air MWTS and MWHS sounding channels are larger than those previously derived for the Advanced Technology Microwave Sounder.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.40904002 and 40804004)the China-Australia Special Fund of International Collaborative Scientific Research Project(Grant No.40911120024)+1 种基金the National Basic Research Program of China(973 Project,Grant No.2006CB701301)the National High Technology Research and Development Program of China(863 Project,Grant No.2007AA12Z339)
文摘In recent years, radio occultation (RO) technology making use of global positioning system (GPS) signals has been exploited to obtain profiles of atmospheric parameters in the neutral atmosphere. In this paper, the RO refractivity profiles obtained from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) mission are statistically compared with the observations of 38 radiosonde stations provided by the Australian Bureau of Meteorology during the period from 15 July 2006 through 15 July 2007. Different collocation criteria are compared at first, and COSMIC RO soundings that occur within 3 hours and 300 km of radiosonde measurements are used for the final statistical comparison. The overall results show that the agreements between the COSMIC refractivity profiles and the radiosonde soundings from the 38 stations are very good at 0-30 km altitude, with mean absolute relative refractivity deviations of less than 0.5%. Latitudinal comparisons indicate that there are negative refractivity deviations in the lower troposphere over the low latitude and middle latitude regions and large standard deviations exist in the lower troposphere of low latitude regions, which can reach up to ~6%. The comparisons of COSMIC RO refractivity profiles and radiosonde observations for 3 polar stations in four different seasons indicate that the accuracy of GPS RO profiles is better in the Austral summer and autumn than in the Austral spring and winter during the year from September 2006 to August 2007.
基金The authors wish to thank the anonymous reviewers who gave us useful suggestions,and we also thank CHAMP—ISDC for providing the occultation data This work was supported by the National Science Foundation of China under No.40333034 an d the Chinese Academy of Science under No.KZCX3-S、v_217.
文摘A new method applying an artificial neural network (ANN) to retrieve water vapor profiles in the troposphere is presented. In this paper, a fully-connected, three-layer network based on the backpropagation algorithm is constructed. Month, latitude, altitude and bending angle are chosen as the input vectors and water vapor pressure as the output vector. There are 130 groups of occultation measurements from June to November 2002 in the dataset. Seventy pairs of bending angles and water vapor pressure profiles are used to train the ANN, and the sixty remaining pairs of profiles are applied to the validation of the retrieval. By comparing the retrieved profiles with the corresponding ones from the Information System and Data Center of the Challenging Mini-Satellite Payload for Geoscientific Research and Application (CHAMP-ISDC), it can be concluded that the ANN is relatively convenient and accurate. Its results can be provided as the first guess for the iterative methods or the non-linear optimal estimation inverse method.
基金support from the National Natural Science Foundation of China (NSFC) through grant numbers 41525015 and 41774186
文摘The Martian ionosphere is produced by a number of controlling processes, including solar extreme ultraviolet radiation (EUV) and X-ray ionization, impact ionization by precipitating electrons, and day-to-night transport. This study investigates the structural variability of the Martian ionosphere with the aid of the radio occultation (RO) experiments made on board the recent Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft. On the dayside, the RO electron density profiles are described by the superposition of two Chapman models, representing the contributions from both the primary layer and the low-altitude secondary layer. The inferred subsolar peak electron densities and altitudes are 1.24×10^5 cm^-3 and 127 km for the former, and 4.28×10^4 cm^-3 and 97 km for the latter, respectively, in general agreement with previous results appropriate for the low solar activity conditions. Our results strengthen the role of solar EUV and X-ray ionization as the driving source of plasma on the dayside of Mars. Beyond the terminator, a systematic decline in ionospheric total electron content is revealed by the MAVEN RO measurements made from the terminator crossing up to a solar zenith angle of 120°. Such a trend is indicative of day-to-night plasma transport as an important source for the nightside Martian ionosphere.
基金supported by the National Science Foundation of China(41174029,41204028)Chinese Arctic and Antarctic Administration(20110205)the Fundamental Research Funds for the Central Universities(121001)
文摘The temporal distribution characteristics of COSMIC occultation data are analyzed in detail, and the limitations in earthquake-ionosphere anomaly detection caused by the temporal distribution characteristics of COSMIC occultation data are discussed using the example of the Wenchuan earthquake. The results demonstrate that there is no fixed temporal resolution for COSMIC occultation data when compared with other ionospheric observation techniques. Therefore, occultation data cannot currently be independently utilized in research studies but can only be used as a complement to other ionospheric observation techniques for applications with high temporal resolution demands, such as earthquake-ionosphere anomaly detection.
文摘The electromagnetic satellite Zhangheng 01(ZH-01) was successfully launched on February 2, 2018. The GNSS Radio Occultation(GRO) receiver on board the satellite is able to observe the occultation events of GPS and BeiDou navigation satellites. We analyzed the data acquired during the in-orbit testing period. We concludes that the GRO ionosphere inversion results are reasonable,the trend is correct, the satellite can observe about 600 ionosphere occultation events each day. The global coverage of more than 30000 consecutive GRO events in more than two months were analyzed and compared with COSMIC observations: both the GRO and COSMIC occultation can realize global coverage: the Nm F2 and Hm F2 global distributions are similar and change obviously with latitude. We used three digisondes at different latitudes to analyze and compare the spatio-temporally consistent GRO data: the RMSE of GRO Nm F2 relative to digisonde is better than 9.41%, the correlation coefficient is better than 0.8682: the relative RMSE of Hm F2 is better than 7.80% and the correlation coefficient is better than 0.7066.
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant 61971385.
文摘Atmospheric stellar occultation observation technology is an advanced space-based detection technology that can measure the vertical distribution of trace gas composition,temperature,and aerosol content in a planet’s atmosphere.In this study,an inversion algorithm of the onion-peeling method was constructed to invert the transmittance obtained from the forward mask.The method used a three-dimensional ray-tracing simulation to obtain the transmission path of the light in the Earth’s atmosphere.The relevant parameters were then combined in the high-resolution transmission molecular absorption(HITRAN)database,and line-by-line integration was performed to calculate the atmospheric transmittance.The transmittance value was then used as an input to calculate the vertical distribution of oxygen molecules when using the single-wavelength inversion of the onion-peeling method.Finally,the oxygen molecule content was compared with the value attained by the Mass Spectrometer and Incoherent Scatter Radar Extended(MSISE00)atmospheric model to determine the relative error of our model.The maximum error was found to be 0.3%,which is low enough to verify the reliability of our algorithm.Using Global-scale Observations of the Limb and Disk(GOLD)measured data to invert the oxygen number density,we calculated its relative deviation from the published result to further verify the algorithm.The inversion result was affected by factors such as prior data,the absorption spectral line type,the ellipticity of the Earth,and the accuracy of the orbit.Analysis of these error-influencing factors showed that the seasons and the Earth’s ellipticity affected the accuracy of the model only 0.001%and could therefore be ignored.However,latitude and solar activity had a greater impact on accuracy,on the order of 0.1%.The absorption line type affected the accuracy of the model by as much as 1%.All three of these factors therefore need to be considered during the inversion process.
基金support by the Thousand Young Talent Program of Chinafunded by the National Science Foundation of China (41661164034, 41525016)
文摘Electron density is a key parameter to characterize Martian ionospheric structure and dynamics. Based on the ephemeris and auxiliary information derived from the Spacecraft, Planet, Instruments, C-matrix, and Events(SPICE) toolkit, we calculated the bending angle of signal path from the frequency residuals measured by the Mars Express Radio Science Experiment(Ma RS) of the Mars Express(MEX) mission under the assumption of a spherically symmetric ionosphere. We stratified the ionosphere into layers and assumed a linear change of bending angle between layers, to derive profiles in radial distance of refractivity with the optimized parameters of upper integral limit of 4890 km and baseline correction boundary of 3690 km. Meanwhile, we also compared the retrieved electron density profiles between the frequency residuals of the single-frequency and differential Doppler of the dual-frequency. In total, ~640 electron density profiles of Martian ionosphere between April 2004 and April 2015 were retrieved successfully. There are 24 profiles identified manually that exhibit an additional sporadic layer occurrence below the normal two-layers. We also found that the peak altitude of this layer increases with the main peak altitude.
基金Supported by the National Natural Science Foundation of China.
文摘We describe and analyze observations of mutual events of Galilean satellites made at the Yunnan Observatory in February 2003 from CCD imaging for the first time in China. Astrometric positions were deduced from these photometric observations by modelling the relative motion and the photometry of the involved satellites during each event.
基金supported by the National Natural Science Foundation of China Project(Grant No.11573052)
文摘The Gravity waves activities in the Tibetan Plateau are very complex with different effects and natures that are not clear due to the lack of high resolution data from space and also from ground. In this paper,using COSMICGPS radio occultation data from 2006 to 2014, the atmospheric gravity waves activities and climatologic behaviors in Tibetan stratosphere are studied and analyzed, which show different characteristics. Most of the gravity waves with potential energy(Ep) at altitude of 17-24 km are associated with mountain waves. A good correlation between gravity wave activities and zonal wind flow is found. The distribution of gravity wave(GW) activities in Tibet is strongly connected with zonal wind variation and topography. GW activities are enhanced in winter seasons and decreased in summer seasons since strong western winds persist at all heights of the Tibetan troposphere. The gravity waves generated in the Tibetan area are mostly related to the orography of the area. The vertical wavelengths of GWS are shorter.Gravity waves in the Northwest have different vertical wavelengths in the Southeastern part of Tibetan Plateau, and dominant wavelengths are 3-5 km in the Northwest and 2-3 km in the Southeast,respectively. In the summer, the Northwestern part is the main source of wave generation while in the winter the GW is generated almost from all peaks of the Tibetan Plateau. Gravity waves in the region are clearly related to deep convection, which can also be proved by the inverse relation of Outgoing long wave radiation(OLR) and potential energy(Ep).
文摘Focusing on carrying out GPS occultation observat io ns with a receiver set on LEO satellite, this paper develops the LEO orbit simul ation system based on which the occultation events can be simulated taking into account the geometric relationship of the satellites and the field of view of th e receiver antenna. In this paper, the impacts of 4 types of LEO orbit parameter s including argument of latitude (AOL), right ascension of ascending node (RAAN) , orbit height and orbit inclination on the distribution and number of occultati on events observed with a single LEO satellite are discussed through simulat ion and some conclusions are drawn.
基金supported by the National Natural Science Foundation of China(Grant Nos.40775064,41105063,and 41375113)the Special Scientific Research Fund of Meteorological Public Welfare Profession of China(Grant Nos.GYHY201006015 and GYHY201206007)
文摘Global Navigation Satellite System (GNSS) radio occultation measurements have been assimilated into the four- dimensional variational data assimilation system (YH4DVAR) using a one-dimensional bending angle operator (GBAO) as a new type of observation. For the sake of verifying the impact of GNSS radio occultation (RO) measurements to the data assimilation system, three experiments have been conducted. The statistical results of the analysis error experiment and forecast skill experiment show that the GNSS RO measurements have an impact on the analysis system. The typhoon forecast experiment shows the impact on the important weather process. They all have a positive impact on the weather forecast. Lastly, we look forward to future work on the observation system simulation experiment (OSSE) to investigate the impact of GNSS RO measurements as a function of observation number, which is an effective method to estimate the saturation of the observation number.
基金Funded by the Opening Foundation of the Key Laboratory of Geospace Environment and Geodesy of the Ministry of Education(03-04-09).
文摘By using observed CHAMP orbit ephemeredes and MSISE90 dry air model and regarding the earth as a sphere and an ellipsoid respectively, phase delays are simulated and the simulated data are retrieved under different schemes. The comparison between the inverted temperature profiles and the model temperature profiles shows that by inverting observed data, we will get temperature results with large errors if the effect of Earth’s oblateness is omitted. The correction method is proved to be effective because the temperature errors decreased obviously with this method.
基金Supported by the National Natural Science Foundation of China under Grant Nos 41774158,41474129 and 41704148the Chinese Meridian Projectthe Youth Innovation Promotion Association of the Chinese Academy of Sciences under Grant No2011324
文摘Extracting and parameterizing ionospheric waves globally and statistically is a longstanding problem. Based on the multichannel maximum entropy method(MMEM) used for studying ionospheric waves by previous work, we calculate the parameters of ionospheric waves by applying the MMEM to numerously temporally approximate and spatially close global-positioning-system radio occultation total electron content profile triples provided by the unique clustered satellites flight between years 2006 and 2007 right after the constellation observing system for meteorology, ionosphere, and climate(COSMIC) mission launch. The results show that the amplitude of ionospheric waves increases at the low and high latitudes(~0.15 TECU) and decreases in the mid-latitudes(~0.05 TECU). The vertical wavelength of the ionospheric waves increases in the mid-latitudes(e.g., ~50 km at altitudes of 200–250 km) and decreases at the low and high latitudes(e.g., ~35 km at altitudes of 200–250 km).The horizontal wavelength shows a similar result(e.g., ~1400 km in the mid-latitudes and ~800 km at the low and high latitudes).
文摘The tropopause is a transitional layer between the troposphere and the stratosphere. The exchange of chemical constituents of the atmosphere (namely masses of air, water vapor, trace gases etc.) and energy between the troposphere and the stratosphere occurs through this layer. We suppose that just exchanges that are taking place at the tropopause heights are strongly influenced by the Global Change forcing. For this reason it is particularly urgent to accumulate temporal data the most accurate possible and with a certain continuity series to understand comprehensively what is happening to our climate. It is well known that Radio Occultation technique applied using Global Navigations Satellite Systems (GNSS-RO) is a powerful tool to detect the tropopause heights. It can be done working on the level 2 data provided by GNSS-RO payload: i.e. atmospheric profiles of pressure and temperature. We propose to measure tropopause using GNSS-RO level 1 data;i.e. the bending angles (BA) of the GNSS signal through the atmosphere. We fit the BA profiles applying in the integral relationship of BA as refractivity profile of background the Hopfield dry model of atmosphere which depends on the fourth degree of the height above the Earth. Through the layers in which tropopause is contained, the residuals between the background model and the observed BA have an anomalous trend. The residuals in this zone form anomalous non-gaussian bumps that we have exploited just to determine the relevant parameters of the tropopause. Such bumps are due to the wrong theoretical assumption made by Hopfield for the re-construction of the dry refractivity that the temperature lapse rate of the atmosphere is constant. But we know that the definition of tropopause according the World Meteorological Organization (WMO) is just the height where a sudden change of the temperature lapse rate usually occurs. Thus in the present work we have determined tropopause heights with new algorithms which exploit the bumps occurring along the BA profiles achieved by GNSS-RO. We have used the huge amount of data provided by several space missions devoted to GNSS-RO (namely COSMIC, METOP, etc.) for tuning the algorithms, performed a validation and provided a robust statistical soundness. The same GNSS-RO observations are helpful also to reconstruct the Mapping Function commonly applied in geodetic applications. Global mapping functions built with GNSS-RO and their evolution in time can be an interesting parameter helpful for climate investigations as well.
文摘Lunar occultation observations are useful in refining lunar limb profiles, which will be used for the analysis of solar eclipse observations to detect the variation of the solar diameter, and in detecting the possible errors of the Hipparcos proper motion system. Many lunar occultations have been observed in Japan. Some of the results are shown in this paper to encourage people in the world to observe more lunar occultations with better accuracies.
文摘A lunar occultation (LO) technique in the near-infrared (NIR) provides angular resolution down to milliarcseconds for an occulted source, even with ground- based 1 m class telescopes. LO observations are limited to brighter objects because they require a high signal-to-noise ratio (S/N ~40) for proper extraction of angular diameter values. Hence, methods to improve the S/N ratio by reducing noise using Fourier and wavelet transforms have been explored in this study. A sample of 54 NIR LO light curves observed with the IR camera at Mt Abu Observatory has been used. It is seen that both Fourier and wavelet methods have shown an improvement in S/N compared to the original data. However, the application of wavelet transforms causes a slight smoothing of the fringes and results in a higher value for angular diameter. Fourier transforms which reduce discrete noise frequencies do not distort the fringe. The Fourier transform method seems to be effective in improving the S/N, as well as improving the model fit, particularly in the fainter regime of our sample. These methods also provide a better model fit for brighter sources in some cases, though there may not be a significant imorovement in S/N.
文摘A 3-D shape model of the sixth largest of the main belt asteroids, (704) Interamnia, is presented. The model is reproduced from its two stellar occultation observations and six lightcurves between 1969 and 2011. The first stellar occultation was the occultation of TYC 234500183 on 1996 December 17 observed from 13 sites in the USA. An elliptical cross section of (344.6 ± 9.6 km) × (306.2 ± 9.1 km), for position angle P = 73.4 ± 12.5° was fitted. The lightcurve around the occultation shows that the peak-to-peak amplitude was 0.04 mag. and the occultation phase was just before the minimum. The second stellar occultation was the occultation of HIP 036189 on 2003 March 23 observed from 39 sites in Japan and Hawaii. An elliptical cross section of (349.8 ± 0.9 km) × (303.7 ± 1.7 km), for position angle P = 86.0 ± 1.1° was fitted. A companion of 8.5 mag. of the occulted star was discovered whose separation is 12 ± 2 mas (milli-arcseconds), P = 148 ± 11°. A combined analysis of rotational lightcurves and occultation chords can return more information than can be obtained with either technique alone. From follow-up photometric observations of the asteroid between 2003 and 2011, its rotation period is determined to be 8.728967167 ± 0.00000007 hours, which is accurate enough to fix the rotation phases at other occultation events. The derived north pole is λ2000 = 259 ± 8°, β2000 = -50 ± 5° (retrograde rotation);the lengths of the three principal axes are 2a = 361.8 ± 2.8 km, 2b = 324.4 ± 5.0 km, 2c = 297.3 ± 3.5 km, and the mean diameter is D = 326.8 ± 3.0 km. Supposing the mass of Interamnia as (3.5 ± 0.9) × 10-11 solar masses, the density is then ρ = 3.8 ± 1.0 g·cm-3.
文摘This paper investigates the total electron content (TEC) which is a major challenge to space and related industries, most especially in an equatorial region like Thailand within the geographical latitude 07°35'N - 20°17'N. This research was achieved using radio occultation data from COSMIC mission. The monthly, seasonal and annual TEC and electron density variation monitoring conducted during increasing solar activity from 2010 to 2013 due to changes and instability of ionospheric parameters. It was observed that electron density and TEC was predominant in summer season. Summer has the highest electron density and TEC values all through and the annual mean values keep on increasing within the period under consideration. In conclusion, ionospheric fluctuations and perturbations were observed to be at pick between the months of March and May. The results of the study demonstrated that ionospheric irregularities were steadily on the increase, confirming 24th solar cycle prediction by NASA and depended on many factors among the major ones which are located on the latitude, season and solar activity.
基金National Natural Science Foundation of China(Grant Nos.42174192,12241101,and 91952111).
文摘Internal gravity waves(IGWs)are critical in driving Martian atmospheric motion and phenomena.This study investigates Martian IGWs by using high-resolution data from China’s Tianwen-1 mission and the National Aeronautics and Space Administration’s Mars Global Surveyor(MGS)by the radio occultation(RO)technique.Key IGW parameters,such as vertical and horizontal wavelengths,intrinsic frequency,and energy density,are extracted based on vertical temperature profiles from the Martian surface to~50 km altitude.Data reveal that the Martian IGWs are predominantly small-scale waves,with vertical wavelengths between 6 and 13 km and horizontal wavelengths extending to thousands of kilometers.These waves propagate almost vertically and exhibit low intrinsic frequencies close to the inertial frequency,with the characteristic of low-frequency inertial IGWs.Tianwen-1 data indicate stronger IGW activity,higher energy density,and less dissipation than MGS data in the northern hemisphere.Moreover,MGS data in the southern hemisphere show higher buoyancy frequencies and lower vertical wavelengths,suggesting more stable atmospheric conditions conducive to IGW propagation.These extracted IGW characteristics can enhance our understanding of the atmospheric dynamics on Mars and contribute valuable information for parameterization in global circulation models.
基金Supported by the Chinese Academy of Meteorological Sciences Basic Research and Operation Fund(2018Y010)National Key Research and Development Program of China(2018YFC1506500)Fengyun Satellite Meteorological Application System Project(FY3(02P)-MAS-1803)
文摘The newly launched Fengyun-3D(FY-3D)satellite carries microwave temperature sounder(MWTS)and microwave humidity sounder(MWHS),providing the global atmospheric temperature and humidity measurements.It is important to assess the in orbit performance of MWTS and MWHS and understand their calibration accuracy before using them in numerical weather prediction and many other applications such as hurricane monitoring.This study aims at quantifying the biases of MWTS and MWHS observations relative to the simulations from the collocated Global Positioning System(GPS)radio occultation(RO)data.Using the collocated FY-3C Global Navigation Satellite System Occultation Sounder(GNOS)RO data under clear-sky conditions as inputs to Community Radiative Transfer Model(CRTM),brightness temperatures and viewing angles are simulated for the upper level sounding channels of MWTS and MWHS.In order to obtain O–B statistics under clear sky conditions,a cloud detection algorithm is developed by using the two MWTS channels with frequencies at 50.3 and 51.76 GHz and the two MWHS channels with frequencies centered at 89 and 150 GHz.The analysis shows that for the upper air sounding channels,the mean biases of the MWTS observations relative to the GPS RO simulations are negative for channels 5–9,with absolute values<1 K,and positive for channels 4 and 10,with values<0.5 K.For the MWHS observations,the mean biases in brightness temperature are negative for channels 2–6,with absolute values<2.6 K and relatively small standard deviations.The mean biases are also negative for channels 11–13,with absolute values<1.3 K,but with relatively large standard deviations.The biases of both MWTS and MWHS show scan-angle dependence and are asymmetrical across the scan line.The biases for the upper air MWTS and MWHS sounding channels are larger than those previously derived for the Advanced Technology Microwave Sounder.