Since brain tumors endanger people’s living quality and even their lives, the accuracy of classification becomes more important. Conventional classifying techniques are used to deal with those datasets with character...Since brain tumors endanger people’s living quality and even their lives, the accuracy of classification becomes more important. Conventional classifying techniques are used to deal with those datasets with characters and numbers. It is difficult, however, to apply them to datasets that include brain images and medical history (alphanumeric data), especially to guarantee the accuracy. For these datasets, this paper combines the knowledge of medical field and improves the traditional decision tree. The new classification algorithm with the direction of the medical knowledge not only adds the interaction with the doctors, but also enhances the quality of classification. The algorithm has been used on real brain CT images and a precious rule has been gained from the experiments. This paper shows that the algorithm works well for real CT data.展开更多
文摘Since brain tumors endanger people’s living quality and even their lives, the accuracy of classification becomes more important. Conventional classifying techniques are used to deal with those datasets with characters and numbers. It is difficult, however, to apply them to datasets that include brain images and medical history (alphanumeric data), especially to guarantee the accuracy. For these datasets, this paper combines the knowledge of medical field and improves the traditional decision tree. The new classification algorithm with the direction of the medical knowledge not only adds the interaction with the doctors, but also enhances the quality of classification. The algorithm has been used on real brain CT images and a precious rule has been gained from the experiments. This paper shows that the algorithm works well for real CT data.