By analyzing the correlation between the occurrence area of grasshopper and 74 characteristic indexes of atmospheric circulation in western Aletai from 1991 to 2008,the atmospheric circulation factors which had the si...By analyzing the correlation between the occurrence area of grasshopper and 74 characteristic indexes of atmospheric circulation in western Aletai from 1991 to 2008,the atmospheric circulation factors which had the significant relationship with the occurrence area of grasshopper in different counties were screened.The prediction models for the occurrence area of grasshopper in different counties were established by stepwise regression method,and the models obtained were also tested.These models were subsequently utilized to carry out extended prediction on the occurrence area of grasshopper in different counties of western Aletai from 2009 to 2010.Meanwhile,the relationship between the atmospheric circulation factors and the occurrence area of grasshopper were analyzed.The results provided the theoretical basis for the prediction on grasshopper plague.展开更多
At 13:46 on March 11, 2011(Beijing time), an earthquake of Mw=9.0 occurred in Japan. By comparing the tsunami data from Guanhekou marine station with other tsunami wave observation gathered from southeast coastal a...At 13:46 on March 11, 2011(Beijing time), an earthquake of Mw=9.0 occurred in Japan. By comparing the tsunami data from Guanhekou marine station with other tsunami wave observation gathered from southeast coastal area of China, it was evident that, only in Guanhekou, the position of the maximum wave height appeared in the middle part rather than in the front of the tsunami wave train. A numerical model of tsunami propagation based on 2-D nonlinear shallow water equations was built to study the impact range and main causes of the special tsunami waveform discovered in Jiangsu coastal area. The results showed that nearly three-quarters of the Jiangsu coastal area, mainly comprised the part north of the radial sand ridges, reached its maximum tsunami wave height in the middle part of the wave train. The main cause of the special waveform was the special underwater topography condition of the Yellow Sea and the East China Sea area, which influenced the tsunami propagation and waveform significantly. Although land boundary reflection brought an effect on the position of the maximum wave height to a certain extent, as the limits of the incident waveform and distances between the observation points and shore, it was not the dominant influence factor of the special waveform. Coriolis force's impact on the tsunami waves was so weak that it was not the main cause for the special phenomenon in Jiangsu coastal area. The study reminds us that the most destructive wave might not appear in the first one in tsunami wave train.展开更多
Marine gas hydrates accumulate primarily in coarse-grained, high-permeability layers; however, highly saturated natural gas hydrates have been discovered in the fine-grained sediments of Shenhu area, South China Sea(S...Marine gas hydrates accumulate primarily in coarse-grained, high-permeability layers; however, highly saturated natural gas hydrates have been discovered in the fine-grained sediments of Shenhu area, South China Sea(SCS). This may be explained by key factors, such as the great abundance of foraminifera shells. In this paper, by analyzing the SCS foraminifera structure and performing hydrate formation experiments in the foraminifera shells, the contribution of foraminifera to hydrate accumulation in the SCS was investigated from a microscopic point of view. Simulations of hydrate formation were carried out in both pure SCS foraminifera shells and the host sediments. Pore structures in typical foraminifera were studied by use of micro-focus X-ray computed tomography(CT) and scanning electron microscopy(SEM). Hydrate growth and occurrence characteristics in the foraminifera shells were observed in-situ. The results showed that the presence of foraminifera significantly enhanced the effective porosity of the SCS sediments. Moreover, while the hydrates grew preferentially in the chambers of the coarse-grained foraminifera by adhering to the inner walls of the foraminifera shells, no apparent hydrate accumulation was observed in the fine-grained or argillaceous matrix. These findings provide a basis for further studies on the accumulation mechanism of hydrates and physical properties of hydrate reservoir in the South China Sea.展开更多
基金Supported by Youth Fund Project of Meteorological Bureau in Xinjiang Uygur Autonomous Region(201040)~~
文摘By analyzing the correlation between the occurrence area of grasshopper and 74 characteristic indexes of atmospheric circulation in western Aletai from 1991 to 2008,the atmospheric circulation factors which had the significant relationship with the occurrence area of grasshopper in different counties were screened.The prediction models for the occurrence area of grasshopper in different counties were established by stepwise regression method,and the models obtained were also tested.These models were subsequently utilized to carry out extended prediction on the occurrence area of grasshopper in different counties of western Aletai from 2009 to 2010.Meanwhile,the relationship between the atmospheric circulation factors and the occurrence area of grasshopper were analyzed.The results provided the theoretical basis for the prediction on grasshopper plague.
基金financially supported by the Fundamental Research Funds for the Central Universities,Hohai University(Grant No.2011B06014)the Fundamental Research Funds for the Central Public Welfare Research Institutes,Nanjing Hydraulic Research Institute(Grant No.YN912001)+2 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK2012411)the National Science & Technology Pillar Program(Grant No.2012BAB03B01)the Cultivation of Jiangsu Province Graduate Innovation Project(Grant No.KYZZ_0151)
文摘At 13:46 on March 11, 2011(Beijing time), an earthquake of Mw=9.0 occurred in Japan. By comparing the tsunami data from Guanhekou marine station with other tsunami wave observation gathered from southeast coastal area of China, it was evident that, only in Guanhekou, the position of the maximum wave height appeared in the middle part rather than in the front of the tsunami wave train. A numerical model of tsunami propagation based on 2-D nonlinear shallow water equations was built to study the impact range and main causes of the special tsunami waveform discovered in Jiangsu coastal area. The results showed that nearly three-quarters of the Jiangsu coastal area, mainly comprised the part north of the radial sand ridges, reached its maximum tsunami wave height in the middle part of the wave train. The main cause of the special waveform was the special underwater topography condition of the Yellow Sea and the East China Sea area, which influenced the tsunami propagation and waveform significantly. Although land boundary reflection brought an effect on the position of the maximum wave height to a certain extent, as the limits of the incident waveform and distances between the observation points and shore, it was not the dominant influence factor of the special waveform. Coriolis force's impact on the tsunami waves was so weak that it was not the main cause for the special phenomenon in Jiangsu coastal area. The study reminds us that the most destructive wave might not appear in the first one in tsunami wave train.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41506082, 41474119, 41376078, 41306065 & 41306062)the Scientific and Technological Innovation Project Financially Supported by Qingdao National Laboratory for Marine Science and Technology (Grant No. 2015ASKJ03)
文摘Marine gas hydrates accumulate primarily in coarse-grained, high-permeability layers; however, highly saturated natural gas hydrates have been discovered in the fine-grained sediments of Shenhu area, South China Sea(SCS). This may be explained by key factors, such as the great abundance of foraminifera shells. In this paper, by analyzing the SCS foraminifera structure and performing hydrate formation experiments in the foraminifera shells, the contribution of foraminifera to hydrate accumulation in the SCS was investigated from a microscopic point of view. Simulations of hydrate formation were carried out in both pure SCS foraminifera shells and the host sediments. Pore structures in typical foraminifera were studied by use of micro-focus X-ray computed tomography(CT) and scanning electron microscopy(SEM). Hydrate growth and occurrence characteristics in the foraminifera shells were observed in-situ. The results showed that the presence of foraminifera significantly enhanced the effective porosity of the SCS sediments. Moreover, while the hydrates grew preferentially in the chambers of the coarse-grained foraminifera by adhering to the inner walls of the foraminifera shells, no apparent hydrate accumulation was observed in the fine-grained or argillaceous matrix. These findings provide a basis for further studies on the accumulation mechanism of hydrates and physical properties of hydrate reservoir in the South China Sea.