In this study, three high frequent occurrence regions of tropical cyclones(TCs), i.e., the northern South China Sea(the region S), the south Philippine Sea(the region P) and the region east of Taiwan Island(the region...In this study, three high frequent occurrence regions of tropical cyclones(TCs), i.e., the northern South China Sea(the region S), the south Philippine Sea(the region P) and the region east of Taiwan Island(the region E), are defined with frequency of TC's occurrence at each grid for a 45-year period(1965–2009), where the frequency of occurrence(FO) of TCs is triple the mean value of the whole western North Pacific. Over the region S, there are decreasing trends in the FO of TCs, the number of TCs' tracks going though this region and the number of TCs' genesis in this region. Over the region P, the FO and tracks demonstrate decadal variation with periods of 10–12 year, while over the region E, a significant 4–5 years' oscillation appears in both FO and tracks. It is demonstrated that the differences of TCs' variation in these three different regions are mainly caused by the variation of the Western Pacific Subtropical High(WPSH) at different time scales. The westward shift of WPSH is responsible for the northwesterly anomaly over the region S which inhibits westward TC movement into the region S. On the decadal timescale, the WPSH stretches northwestward because of the anomalous anticyclone over the northwestern part of the region P, and steers more TCs reaching the region P in the greater FO years of the region P. The retreating of the WPSH on the interannual time scale is the main reason for the FO's oscillation over the region E.展开更多
In this paper, according to the data on the middle and strong earthquakes in China, we have preliminary studied the relation between the characteristic of space-time evolution of the seismic apparent strain field and ...In this paper, according to the data on the middle and strong earthquakes in China, we have preliminary studied the relation between the characteristic of space-time evolution of the seismic apparent strain field and the regions of 31 macroseism events since 1955. The result shows that, there is a rather well correlation between the anomaly region of seismic apparent strain and the zone of macroseism event occurrence within the time range of one to about five years. The R value of the application of the abnormal region of seismic apparent strain to predicting the area of strong earthquake occurrence is 0.458, and the empirical possibility of forecasting the region of macroseism occurrence is 0.625, and so the forecasting effect is comparatively well. Finally, the main results obtained above are discussed preliminarily.展开更多
The Kuroshio frontal instable processes (KFIP) in the East China Sea (ECS) not only have a great impact on the hydrologic characteristics,the pollutants drift,the distribution of seafloor sediment and the ships na...The Kuroshio frontal instable processes (KFIP) in the East China Sea (ECS) not only have a great impact on the hydrologic characteristics,the pollutants drift,the distribution of seafloor sediment and the ships navigation of the ECS,but also are closely related to the climate changes of the coastal areas of the ECS.However the frequency and area of occurrence of the KFIP have not been studied fully and detailedly.Because of its high spatial and temporal resolution,MODIS data is a kind of very good data source for surveying and researching the KFIP in the ECS.The aim of this study is to detect the KFIP in the ECS by using MODIS data,and to study the frequency and region of occurrence of the KFIP in the ECS.The selection has coverage of level 2 data of MODIS SST and Kd490 ranging from July 1,2002 to June 30,2009 of the ECS when there was no cloud impact or little.By using of the data,the minimum standard of the Kuroshio temperature fronts and the diffuse attenuation coefficient (Kd490) fronts of the ECS are given.Based on these standards and the curvature distinguish methods,the standard of curvature distinguish for the KFIP in the ECS are put forward.By making use of this standard,we study a total of 2073 satellite-derived images,and discover that as long as there is no cloud impact from January to May and October to December,the KFIP in the ECS are surely found in MODIS satellite images.From June to September,the frequency of occurrence can also reach to 82.9% at least.Moreover,it is obtained that there are three source regions of these instability processes,namely,(26°N,121.5°E) nearby,(27°N,125°E) nearby and (30°N,128°E) nearby.The differences of the characteristics of these instability processes which are generated in different regions are analyzed in the present study.展开更多
基金supported by the National Natural Science Foundation of China(Nos. 41106018, 40975038)Program 973 (Nos. 2012CB417402, 2010CB950402, 2012CB955604)
文摘In this study, three high frequent occurrence regions of tropical cyclones(TCs), i.e., the northern South China Sea(the region S), the south Philippine Sea(the region P) and the region east of Taiwan Island(the region E), are defined with frequency of TC's occurrence at each grid for a 45-year period(1965–2009), where the frequency of occurrence(FO) of TCs is triple the mean value of the whole western North Pacific. Over the region S, there are decreasing trends in the FO of TCs, the number of TCs' tracks going though this region and the number of TCs' genesis in this region. Over the region P, the FO and tracks demonstrate decadal variation with periods of 10–12 year, while over the region E, a significant 4–5 years' oscillation appears in both FO and tracks. It is demonstrated that the differences of TCs' variation in these three different regions are mainly caused by the variation of the Western Pacific Subtropical High(WPSH) at different time scales. The westward shift of WPSH is responsible for the northwesterly anomaly over the region S which inhibits westward TC movement into the region S. On the decadal timescale, the WPSH stretches northwestward because of the anomalous anticyclone over the northwestern part of the region P, and steers more TCs reaching the region P in the greater FO years of the region P. The retreating of the WPSH on the interannual time scale is the main reason for the FO's oscillation over the region E.
基金The Key Project(95-04-06-03,95-04-07-02)from China Seismological Bureau.
文摘In this paper, according to the data on the middle and strong earthquakes in China, we have preliminary studied the relation between the characteristic of space-time evolution of the seismic apparent strain field and the regions of 31 macroseism events since 1955. The result shows that, there is a rather well correlation between the anomaly region of seismic apparent strain and the zone of macroseism event occurrence within the time range of one to about five years. The R value of the application of the abnormal region of seismic apparent strain to predicting the area of strong earthquake occurrence is 0.458, and the empirical possibility of forecasting the region of macroseism occurrence is 0.625, and so the forecasting effect is comparatively well. Finally, the main results obtained above are discussed preliminarily.
基金the special funds for marine commonweal research under contract No.200705027variability of the subtropical gyre in North Pacific and its impacts on dynamic environment of China marginal seas under contract No.2007CB411800defense industrial technology development program and the special funds for basic scientific research project of the First Institute of Oceanography,SOA under contract No.2010G12
文摘The Kuroshio frontal instable processes (KFIP) in the East China Sea (ECS) not only have a great impact on the hydrologic characteristics,the pollutants drift,the distribution of seafloor sediment and the ships navigation of the ECS,but also are closely related to the climate changes of the coastal areas of the ECS.However the frequency and area of occurrence of the KFIP have not been studied fully and detailedly.Because of its high spatial and temporal resolution,MODIS data is a kind of very good data source for surveying and researching the KFIP in the ECS.The aim of this study is to detect the KFIP in the ECS by using MODIS data,and to study the frequency and region of occurrence of the KFIP in the ECS.The selection has coverage of level 2 data of MODIS SST and Kd490 ranging from July 1,2002 to June 30,2009 of the ECS when there was no cloud impact or little.By using of the data,the minimum standard of the Kuroshio temperature fronts and the diffuse attenuation coefficient (Kd490) fronts of the ECS are given.Based on these standards and the curvature distinguish methods,the standard of curvature distinguish for the KFIP in the ECS are put forward.By making use of this standard,we study a total of 2073 satellite-derived images,and discover that as long as there is no cloud impact from January to May and October to December,the KFIP in the ECS are surely found in MODIS satellite images.From June to September,the frequency of occurrence can also reach to 82.9% at least.Moreover,it is obtained that there are three source regions of these instability processes,namely,(26°N,121.5°E) nearby,(27°N,125°E) nearby and (30°N,128°E) nearby.The differences of the characteristics of these instability processes which are generated in different regions are analyzed in the present study.