1 Background and purpose of workshop The Southern Ocean plays a fundamental role in the function of the Earth System, influencing climate, sea level, biogeochemical cycles, and biological productivity on a variety of ...1 Background and purpose of workshop The Southern Ocean plays a fundamental role in the function of the Earth System, influencing climate, sea level, biogeochemical cycles, and biological productivity on a variety of scalesIll. Observations from the Southern Ocean suggest that dramatic changes are taking place, which are of global concern, yet because of its remote location, seasonal sea ice, and harsh environment, the Southern Ocean remains one of the least sampled zones in the world.展开更多
The Integrated Marine Observing System [IMOS] is an Australian national program for observing the oceans around Australia. As one of its important nodes, the New South Wales Integrated Marine Observing System (NSW-IM...The Integrated Marine Observing System [IMOS] is an Australian national program for observing the oceans around Australia. As one of its important nodes, the New South Wales Integrated Marine Observing System (NSW-IMOS] aims to provide more accurate descriptions of the East Australian Current [EAC]. The purpose of this paper is to evaluate the potential economic benefits from NSW-IMOS. Six related sectors which can potentially be among its main beneficiaries are considered: beach recreation, commercial fishing, recreational fishing, recreational boating, natural hazard predictions, and oil spill mitigation. The 1% constant percentage increase evaluation method is used to estimate the potential economic benefits to these six beneficiaries. By using this method, our study shows that the total potential economic benefit for these sectors is estimated to be $ 6.07 million per year. We consider that this is indicative but not conclusive in demonstrating some of the potential economic benefits that can be provided from information gathered by NSW-IMOS facilities. We conclude with further evaluative approaches that could be used to provide more accurate estimates of potential economic benefits.展开更多
During the summer of 2008, the third CHINARE Arctic Expedition was carried out on board of Xuelong Icebreaker in the central Chukchi Sea. A submersible mooring system was deployed and recovered at Station CN-01 (71.4...During the summer of 2008, the third CHINARE Arctic Expedition was carried out on board of Xuelong Icebreaker in the central Chukchi Sea. A submersible mooring system was deployed and recovered at Station CN-01 (71.40.024'N, 167.58.910'W) with 33 days of the current profile records, and continuous observation of temperature and salinity data were collected. This mooring station locates in the blank of similar observation area and it is the first time for our Chinese to finish this kind of long-term mooring work in this area. This mooring system finished integrated hydrological observations with long-term continuous record of the whole profile velocity for the first time. Based on time series analysis of temperature, salinity, velocity and flow direction, we get the following main results. (1) During the observation period, the mean surface current velocity is 70.2 cm/s eastward, and velocity reaches its maximum in average at 3 m level with magnitude 90.0 cm/s, direction 206.. (2) In 9-30 m layers, the semidiurnal period variation is the most obvious, the flow direction is quite stable, and the flow is synchronous and consistent vertically. (3) Besides the semidiurnal period variation, the main variation in the upper layer is in 11-d period, with variations in period 5.5, 5.5, and 3.7 d, which reflect the influences of sea surface wind change and maintenance. (4) Near the bottom the temperature change is correlated and synchronized with the conductivity.展开更多
Ocean observing satellites have become an important part of the China's three-dimensional marine observation system.They have played more and more important roles in marine pollution monitoring,marine environment ...Ocean observing satellites have become an important part of the China's three-dimensional marine observation system.They have played more and more important roles in marine pollution monitoring,marine environment and marine disaster monitor and forecasting,marine resource investigation and marine scientific research.In this paper,the author will give a brief review of China's operational and scientific activities in satellites ocean observation during 2008 to 2010.These activities include the application of the HY-1B for red tide and green tide detecting and monitoring,sea ice monitoring,fishery resources assessment at coastal zone and ocean,marine water quality assessment,sea surface temperature monitoring and forecasting,ocean primary productivity and carbon cycle research,and the development in the ocean dynamic environment parameter application technology before launch of HY-2.The achievements we have made in the ocean observation and monitoring during the past 3 years indicate that,the development of the ocean satellite series and the application of the ocean satellite can greatly promote the development of China's three-dimensional marine observation system and earth-observation system from space,accordingly we can improve the ability of acquiring the marine environmental parameter to sustain the marine economy development and the sea defense construction.展开更多
The first Southern Ocean Observing System (SOOS) Asian Workshop was successfully held in Shanghai, China in May 2013, attracting over 40 participants from six Asian nations and widening exposure to the objectives an...The first Southern Ocean Observing System (SOOS) Asian Workshop was successfully held in Shanghai, China in May 2013, attracting over 40 participants from six Asian nations and widening exposure to the objectives and plans of SOOS. The workshop was organized to clarify Asian research activities currently taking place in the Southern Ocean and to discuss, amongst other items, the potential for collaborative efforts with and between Asian countries in $OOS-related activities. The workshop was an important mechanism to initiate discussion, understanding and collaborative avenues in the Asian domain of SOOS beyond current established eflbrts. Here we present some of the major outcomes of the workshop covering the principle themes of SOOS and attempt to provide a way forward to achieve a more integrated research community, enhance data collection and quality, and guide scientific strategy in the Southern Ocean.展开更多
为了科学设计黄渤海海洋气象边界层观测站网并研究观测网布局对数值天气预报模式的影响,本文采用模式误差、海洋气象要素特征区域资料统计分析和观测系统模拟试验(OSSE)方法,根据边界层雾、层云降水、小风与中等风速天气条件设计布局方...为了科学设计黄渤海海洋气象边界层观测站网并研究观测网布局对数值天气预报模式的影响,本文采用模式误差、海洋气象要素特征区域资料统计分析和观测系统模拟试验(OSSE)方法,根据边界层雾、层云降水、小风与中等风速天气条件设计布局方案,并分析站点观测要素对数值预报模式的要素预报的影响。模拟试验数据使用了每6 h NCEP再分析资料FNL(NCEP Final Operational Global Analysis data)、NCEP每天平均的高分辨率海温资料RTG_SST(Real-Time Global Sea Surface Temperature)和石油平台、浮标站等每小时实况观测资料,评估了黄渤海海洋气象站网布局各个方案的优缺点。评估结果表明,湿度和风的要素预报受实况风向风速条件影响,偏东和偏北风个例湿度要素预报较好。然而,在偏南中等风速个例中,风场预报要素更接近实况。温度场的分析综合结果显示,在海气相互作用影响较大的天气过程中,特征区域布站能明显提高温度要素的预报准确率。最后,综合分析多项模拟试验的结果,给出了改进数值预报准确率的海洋布站建议。展开更多
基金hosted and sponsored by the Polar Research Institute of China (PRIC), with additional sponsorship by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP/CAS), the World Climate Research Programme (WCRP) "Climate and the Cryosphere" project (CliC), the Scientific Committee on Antarctic Research (SCAR), and the Scientific Committee on Oceanic Research (SCOR). SOOS acknowledges the support of its host institute, the Institute for Marine and Antarctic Studies (IMAS, University of Tasmania, Australia), and sponsors, Australian Antarctic Division, Antarctica New Zealand, and the New Zealand Antarctic Research Institute.
文摘1 Background and purpose of workshop The Southern Ocean plays a fundamental role in the function of the Earth System, influencing climate, sea level, biogeochemical cycles, and biological productivity on a variety of scalesIll. Observations from the Southern Ocean suggest that dramatic changes are taking place, which are of global concern, yet because of its remote location, seasonal sea ice, and harsh environment, the Southern Ocean remains one of the least sampled zones in the world.
文摘The Integrated Marine Observing System [IMOS] is an Australian national program for observing the oceans around Australia. As one of its important nodes, the New South Wales Integrated Marine Observing System (NSW-IMOS] aims to provide more accurate descriptions of the East Australian Current [EAC]. The purpose of this paper is to evaluate the potential economic benefits from NSW-IMOS. Six related sectors which can potentially be among its main beneficiaries are considered: beach recreation, commercial fishing, recreational fishing, recreational boating, natural hazard predictions, and oil spill mitigation. The 1% constant percentage increase evaluation method is used to estimate the potential economic benefits to these six beneficiaries. By using this method, our study shows that the total potential economic benefit for these sectors is estimated to be $ 6.07 million per year. We consider that this is indicative but not conclusive in demonstrating some of the potential economic benefits that can be provided from information gathered by NSW-IMOS facilities. We conclude with further evaluative approaches that could be used to provide more accurate estimates of potential economic benefits.
基金The National Key Basic Research and Development Plan under contract No. 2010CB950301:"Sea-ice-air interaction in the Southern Ocean and its influence on the south Indian Ocean",International Polar Year Chinese action plan project:"Chukchi Sea & Beaufort Sea ice anomaly variation and its impact on the winter climate of China"National Science and Technology Support Program under contract No.2006BAB18B02:"Water masses and circulation monitoring technology and its application in the southern ocean"The Basic Research Fund Project under contract No.FIO SOA 2010T01:"Key technology research of polar mooring observation system"
文摘During the summer of 2008, the third CHINARE Arctic Expedition was carried out on board of Xuelong Icebreaker in the central Chukchi Sea. A submersible mooring system was deployed and recovered at Station CN-01 (71.40.024'N, 167.58.910'W) with 33 days of the current profile records, and continuous observation of temperature and salinity data were collected. This mooring station locates in the blank of similar observation area and it is the first time for our Chinese to finish this kind of long-term mooring work in this area. This mooring system finished integrated hydrological observations with long-term continuous record of the whole profile velocity for the first time. Based on time series analysis of temperature, salinity, velocity and flow direction, we get the following main results. (1) During the observation period, the mean surface current velocity is 70.2 cm/s eastward, and velocity reaches its maximum in average at 3 m level with magnitude 90.0 cm/s, direction 206.. (2) In 9-30 m layers, the semidiurnal period variation is the most obvious, the flow direction is quite stable, and the flow is synchronous and consistent vertically. (3) Besides the semidiurnal period variation, the main variation in the upper layer is in 11-d period, with variations in period 5.5, 5.5, and 3.7 d, which reflect the influences of sea surface wind change and maintenance. (4) Near the bottom the temperature change is correlated and synchronized with the conductivity.
基金supported by 863 Project (2008AA09A403,2007AA092201)
文摘Ocean observing satellites have become an important part of the China's three-dimensional marine observation system.They have played more and more important roles in marine pollution monitoring,marine environment and marine disaster monitor and forecasting,marine resource investigation and marine scientific research.In this paper,the author will give a brief review of China's operational and scientific activities in satellites ocean observation during 2008 to 2010.These activities include the application of the HY-1B for red tide and green tide detecting and monitoring,sea ice monitoring,fishery resources assessment at coastal zone and ocean,marine water quality assessment,sea surface temperature monitoring and forecasting,ocean primary productivity and carbon cycle research,and the development in the ocean dynamic environment parameter application technology before launch of HY-2.The achievements we have made in the ocean observation and monitoring during the past 3 years indicate that,the development of the ocean satellite series and the application of the ocean satellite can greatly promote the development of China's three-dimensional marine observation system and earth-observation system from space,accordingly we can improve the ability of acquiring the marine environmental parameter to sustain the marine economy development and the sea defense construction.
基金hosted and sponsored by the Polar Research Institute of China (PRIC), with additional sponsorship by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), the Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP/CAS), the World Climate Research Programme (WCRP) "Climate and the Cryosphere" project (CliC), SCAR and the Scientific Committee on Oceanic Research (SCOR). We thank Alexander Klepikov, Hyoung Chul Shin, Katsuro Katsumata for providing the information on ship tracks. The conveners would like to thank the efforts by all participants, in particular the presenters, in making the first SOOS Asia Workshop a successful forum by which to highlight the extensive Asian research activities in the Southern Ocean and discuss a way forward in driving collaboration and integration with SOOS, as well as the greater international community. SOOS would like to recognize the support of the Institute for Marine and Antarctic Studies (IMAS, University of Tasmania) in hosting the SOOS International Project Office, and the sponsorship of the office by numerous international organizations (see www.soos.aq/index.php/ about-us/sponsors)
文摘The first Southern Ocean Observing System (SOOS) Asian Workshop was successfully held in Shanghai, China in May 2013, attracting over 40 participants from six Asian nations and widening exposure to the objectives and plans of SOOS. The workshop was organized to clarify Asian research activities currently taking place in the Southern Ocean and to discuss, amongst other items, the potential for collaborative efforts with and between Asian countries in $OOS-related activities. The workshop was an important mechanism to initiate discussion, understanding and collaborative avenues in the Asian domain of SOOS beyond current established eflbrts. Here we present some of the major outcomes of the workshop covering the principle themes of SOOS and attempt to provide a way forward to achieve a more integrated research community, enhance data collection and quality, and guide scientific strategy in the Southern Ocean.
文摘为了科学设计黄渤海海洋气象边界层观测站网并研究观测网布局对数值天气预报模式的影响,本文采用模式误差、海洋气象要素特征区域资料统计分析和观测系统模拟试验(OSSE)方法,根据边界层雾、层云降水、小风与中等风速天气条件设计布局方案,并分析站点观测要素对数值预报模式的要素预报的影响。模拟试验数据使用了每6 h NCEP再分析资料FNL(NCEP Final Operational Global Analysis data)、NCEP每天平均的高分辨率海温资料RTG_SST(Real-Time Global Sea Surface Temperature)和石油平台、浮标站等每小时实况观测资料,评估了黄渤海海洋气象站网布局各个方案的优缺点。评估结果表明,湿度和风的要素预报受实况风向风速条件影响,偏东和偏北风个例湿度要素预报较好。然而,在偏南中等风速个例中,风场预报要素更接近实况。温度场的分析综合结果显示,在海气相互作用影响较大的天气过程中,特征区域布站能明显提高温度要素的预报准确率。最后,综合分析多项模拟试验的结果,给出了改进数值预报准确率的海洋布站建议。