The CO_2-seawater system and the method for calculating the partial pressure of CO2 (pCO2) in seawater are studied. The buffer capability of the ocean to increasing atmospheric CO2 is expressed in terms of the differe...The CO_2-seawater system and the method for calculating the partial pressure of CO2 (pCO2) in seawater are studied. The buffer capability of the ocean to increasing atmospheric CO2 is expressed in terms of the differential buffer factor and buffer index. Dissolutions of aragonite and calcite have a significant inffluence on the differential buffer factor. The trend of change in the buffer factor is obtained by a box model.展开更多
A global mean ocean model including atmospheric heating, heat capacity of the mixed layer ocean, and vertical thermal diffusivity in the lower ocean, proposed by Cess and Goldenberg (1981), is used in this paper to st...A global mean ocean model including atmospheric heating, heat capacity of the mixed layer ocean, and vertical thermal diffusivity in the lower ocean, proposed by Cess and Goldenberg (1981), is used in this paper to study the sensitivity of global warming to the vertical diffusivity. The results suggest that the behaviour of upper ocean temperature is mainly determined by the magnitude of upper layer diffusivity and an ocean with a larger diffusivity leads to a less increase of sea surface temperature and a longer time delay for the global warming induced by increasing CO2 than that with smaller one. The global warming relative to four scenarios of CO2 emission assumed by Intergovernmental Panel of Climate Change (IPCC) is also estimated by using the model with two kinds of thermal diffusivities. The result shows that for various combinations of the CO2 emission scenarios and the diffusivities, the oceanic time delay to the global warming varies from 15 years to 70 years.展开更多
文摘The CO_2-seawater system and the method for calculating the partial pressure of CO2 (pCO2) in seawater are studied. The buffer capability of the ocean to increasing atmospheric CO2 is expressed in terms of the differential buffer factor and buffer index. Dissolutions of aragonite and calcite have a significant inffluence on the differential buffer factor. The trend of change in the buffer factor is obtained by a box model.
文摘A global mean ocean model including atmospheric heating, heat capacity of the mixed layer ocean, and vertical thermal diffusivity in the lower ocean, proposed by Cess and Goldenberg (1981), is used in this paper to study the sensitivity of global warming to the vertical diffusivity. The results suggest that the behaviour of upper ocean temperature is mainly determined by the magnitude of upper layer diffusivity and an ocean with a larger diffusivity leads to a less increase of sea surface temperature and a longer time delay for the global warming induced by increasing CO2 than that with smaller one. The global warming relative to four scenarios of CO2 emission assumed by Intergovernmental Panel of Climate Change (IPCC) is also estimated by using the model with two kinds of thermal diffusivities. The result shows that for various combinations of the CO2 emission scenarios and the diffusivities, the oceanic time delay to the global warming varies from 15 years to 70 years.