Noble gas isotopic compositions of various layers in three-layered (outer, porous and compact layers) cobalt-rich ferromanganese crusts and their basaltic and phosphorite substrates from the western Pacific Ocean we...Noble gas isotopic compositions of various layers in three-layered (outer, porous and compact layers) cobalt-rich ferromanganese crusts and their basaltic and phosphorite substrates from the western Pacific Ocean were analyzed by using a high vacuum gas mass spectrum. The analytical results show that the noble gases in the Co-rich crusts have derived mainly from the ambient seawater, extraterrestrial grains such as interplanetary dust particles (IDPs) and wind-borne continental dust grains, and locally formation water in the submarine sediments, but different noble gases have different sources. He in the crusts derives predominantly from the extraterrestrial grains, with a negligible amount of radiogenic He from the eolian dust grains. Ar is sourced mainly from the dissolved air in the seawater and insignificantly from radiogenic Ar in the eolian continental dust grains or the formation water. Xe and Ne derive mainly from the seawater, with minor amounts of extraterrestrial Xe and Ne in the IDPs. Compared with the porous and outer layers, the compact layer has a relatively high 4He content and lower 3He/4He ratios, suggesting that marine phosphatization might have greatly modified the noble gas isotopic compositions of the crusts. Besides, the 3He/4He values of the basaltic substrates of the cobalt-rich crusts are very low and their R/R. ratios are mostly 〈0.1 R., which are similar to that of phosphorite substrates (0.087 R.), but much lower than that of fresh submarine MORB (8.75±14 Ra) or seamount basalts (3-43 Ra), implying that the basaltic substrates have suffered strong water/rock interaction and reacted with radiogenic ^4He and P-rich upwelling marine currents during phosphatization. The trace elements released in the basalt/seawater interaction might favor the growth of cobalt-rich crusts. The relatively low ^3He/^4He values in the seamount basalts may be used as an important exploration criterion for the cobalt-rich ferromanganese crusts.展开更多
Several types of felsic granitoid rocks have been recognized, intrusive in both the mantle and the crustal sequence of the Semail ophiolite. Several models have been proposed for the source of this suite of tonalites,...Several types of felsic granitoid rocks have been recognized, intrusive in both the mantle and the crustal sequence of the Semail ophiolite. Several models have been proposed for the source of this suite of tonalites, granodiorites, trondhjemites intrusions, however their genesis is still not clearly understood.The sampled Dadnah tonalites that intruded in the mantle section of the Semail ophiolite display arctype geochemical characteristics, are high siliceous, low-potassic, metaluminous to weakly peraluminous, enriched in LILE, show positive peaks for Ba, Pb, Eu, negative troughs for U, Ti and occur with low δ^(18)O_(H_2 O), moderate ε_(Sr) and negative eNd values. They have crystallized at temperatures that range from~550 ℃ to ~720 ℃ and pressure ranging from 4.4 kbar to 6.5 kbar. The isotopic ages from our tonalite samples range between 98.6 Ma and 94.9 Ma, slightly older and overlapping with the age of the metamorphic sole. Our field observations, mineralogical, petrological, geochemical, isotopic and melt inclusion data suggest that the Dadnah tonalites formed by partial melting(~10%-15% continuous or ~12% batch partial melting), accumulation of plagioclase, fractional crystallization(~55%-57%), and interaction with their host harzburgites. These tonalites were the end result of partial melting and subsequent contamination and mixing of ~4% oceanic sediments with ~96% oceanic lithosphere from the subducted slab. This MORB-type slab melt composed from ~97% recycled oceanic crust and ~3% of the overlying mantle.We suggest that a possible protolith for these tonalites was the basaltic lavas from the subducted oceanic slab that melted during the initial stages of the supra-subduction zone(SSZ), which was forming synchronously to the spreading ridge axis. The tonalite melts mildly modified due to low degree of mixing and interaction with the overlying lithospheric mantle. Subsequently, the Dadnah tonalites emplaced at the upper part of the mantle sequence of the Semail ophiolite and are geochemically distinct from the other mantle intrusive felsic granitoids to the south.展开更多
Cooling of the Earth's mantle since the Meso-Archean is predicted by thermal and petrological models to have induced a secular change in the composition of primary mantle-derived magmas-and thus bulk oceanic crust; i...Cooling of the Earth's mantle since the Meso-Archean is predicted by thermal and petrological models to have induced a secular change in the composition of primary mantle-derived magmas-and thus bulk oceanic crust; in particular, suggesting a decrease in maficity over time. This hypothesis underpins several recent studies that have addressed key geological questions concerning evolving plate tectonic styles, the rates and timing of continental crust formation, comparative planetology, and the emergence of complex life on Earth. Major, minor, and trace element geochemical analyses of(meta)mafic rocks preserved in the geological record allows exploration of this theory, although no consensus currently exists about the magnitude of this change and what compositions-if anything-constitute representative examples of Paleo-, Meso-, or Neo-Archean primitive oceanic crust. In this work, we review the current state of understanding of this issue, and use phase equilibria to examine the different mineral assemblages and rock types that would form during metamorphism of basalt of varying maficity in subduction zone environments. The presence(or absence) of such metamorphic products in the geological record is often used as evidence for(or against) the operation of modern-day subductiondriven plate tectonics on Earth at particular time periods; however, the control that secular changes in composition have on the stability of mineral assemblages diagnostic of subduction-zone metamorphism weakens such uniformitarianistic approaches. Geodynamic interpretations of the Archean metamorphic rock record must therefore employ a different set of petrological criteria for determining tectonothermal histories than those applied to Proterozoic or Phanerozoic equivalents.展开更多
Organic matter in cobalt-rich crust (CRC) from the Marcus-Wake Seamounts of the western Pacific Ocean, Sample CM1D03, has been analyzed to understand the source, geochemistry and mineralization of organic matter, an...Organic matter in cobalt-rich crust (CRC) from the Marcus-Wake Seamounts of the western Pacific Ocean, Sample CM1D03, has been analyzed to understand the source, geochemistry and mineralization of organic matter, and the mineralization environment. Biomarkers, includingn-alkanes, isoprenoids, terpanes and sterols, have been detected in various layers of the CRC sample, using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The content of organic carbon (OC) and its stable isotope (δ13C), and the combined features of the biomarkers show that the mineralized organic matter in CM1D03 CRC was mainly derived from microorganisms and lower plankton (e.g., bacteria and algae, respectively) from marine surface water, with some terrestrial higher plant components. The ratio of chloroform bitu-men "A": OC was high in the CRC, between 10.51 and 20.66, showing significant migration characteristics of n-alkanes. Four mineralization categories of organic matter were recognized based on GC chromatograms ofn-alkane molecules: (1) primitive type (bacteria and algae), which is characterized by moderately mature ofn-alkanes preserving the original characteristics of the organic matter from microorganisms and lower plankton; (2) microbial degradation type, which is characterized by low contents ofn-alkanes and rising baseline in the chromatogram, with the "bulge" being the products of organic matter by biodegradation; (3) organic matter migration type, which is characterized by low carbon number ofn-alkanes withnC18 as the main peak carbon, without odd even predominance, and low concentrations of isoprenoids and hydro-carbons with high carbon number; and (4) organic matter hydrothermal type, which is characterized by relatively low concentration of small molecular weightn-alkanes, pristane, and phytane, accompanied by higher concentration ofn-alkanes with carbon number greater thannC18. This study shows that biomarkers can record controlling factors of mineralization and their variation.展开更多
To explore the occurrence phases and enrichment mechanism of rare earth elements(REEs)in cobalt-rich crusts,this study analyzes the mineral composition and REE contents of the samples from Marcus-Wake Seamounts by XRD...To explore the occurrence phases and enrichment mechanism of rare earth elements(REEs)in cobalt-rich crusts,this study analyzes the mineral composition and REE contents of the samples from Marcus-Wake Seamounts by XRD,ICP-OES and ICP-MS.The results show that,(1)the cobalt-rich crusts contain the major crystalline mineral(vernadite),the secondary minerals(quartz,plagioclase and carbonate fluorapatite),and a large amount of amorphous ferric oxyhydroxides(FeOOH).(2)The cobalt-rich crusts contains higher Mn(10.83%to 28.76%)and Fe(6.14%to 18.86%)relative to other elements,and are enriched in REEs,with total REE contents of 1563−3238μg/g and Ce contents of 790−1722μg/g.Rare earth element contents of the old crusts are higher than those of the new crusts.Moreover,the non-phosphatized crusts have positive Ce and negative Y anomalies,and yet the phosphatized crusts have positive Ce and positive Y anomalies,indicating that cobalt-rich crusts is hydrogenetic and REEs mainly come from seawater.(3)Analytical data also show that the occurrence phases of elements in cobalt-rich crusts are closely related to their mineral phases.In the non-phosphatized crusts,REEs are adsorbed by colloidal particles into the crusts(about 67%of REEs in the Fe oxide phase,and about 17%of REEs in the Mn oxide phase).In contrast,in the phosphatized crusts(affected by the phosphatization),REEs may combine with phosphate to form rare earth phosphate minerals,and about 64%of REEs are enriched in the residual phase containing carbonate fluorapatite,but correspondingly the influence of Fe and Mn oxide phases on REEs enrichment is greatly reduced.In addition,the oxidizing environment of seawater,high marine productivity,phosphatization,and slow growth rate can promote the REE enrichment.This study provides a reference for the metallogenesis of cobalt-rich crusts in the Pacific.展开更多
A contact zone sandwiched between an arc and an oceanic crust was discoveredin the Laohushan area in the present study. It consists of a series of north-dipping imbricatedthrust sheets and is exposed on the surface as...A contact zone sandwiched between an arc and an oceanic crust was discoveredin the Laohushan area in the present study. It consists of a series of north-dipping imbricatedthrust sheets and is exposed on the surface as a narrow arcuate belt, which extends for about 30 kmin an E-W direction and measures about 1-3 km wide. Lithologically, it can be divided into foursubzones. Subzone 1 consists of meta-andesite and metasandstone; subzone 2, psammitic schists;subzone 3, psammitic and pelitic schists, quartz diorite and hornfelses; and subzone 4, metagabbro,epidote amphibolite and pelitic schists. The metamorphism has the following grading sequence: lowgreenschist facies in subzone 1 - > high greenschist facies in subzone 2 - > low amphibolite fadesin subzone 3 - > epidote amphibolite facies in subzone 4. Petrographic and geochemical evidenceshows that rocks in subzones 1, 2 and 3 are arc rocks, whereas those of subzone 4 are oceaniccrustal rocks. The metamorphic mineral assemblages and especially mineral chemistry of the bluishgreen amphibole from the pelitic schists and epidote amphibolite of subzone 4 suggest that the rocksof the contact zone were metamorphosed at a pressure of up to 0.69 GPa. It is thought that theLate-Mid Ordovician oceanic lithosphere of a back-arc basin was underthrust northerly beneath an arcto a depth of 20-23 km, where the basaltic rocks and gabbro were converted to epidote amphiboliteand metagabbro respectively. Then, the root rocks of the arc and these metamorphosed oceanic rockswere brought up to shallower depths by thrust faults to form a contact zone between the arc and theoceanic crust in the Laohushan area.展开更多
A new high-resolution velocity model of the southern Kyushu-Palau Ridge(KPR) was derived from an activesource wide-angle seismic reflection/refraction profile. The result shows that the KPR crust can be divided into t...A new high-resolution velocity model of the southern Kyushu-Palau Ridge(KPR) was derived from an activesource wide-angle seismic reflection/refraction profile. The result shows that the KPR crust can be divided into the upper crust with the P-wave velocity less than 6.1 m/s, and lower crust with P-wave velocity between 6.1 km/s and 7.2 km/s. The crustal thickness of the KPR reaches 12.0 km in the center, which gradually decreases to 5.0–6.0 km at sides. The velocity structure of the KPR is similar to the structures of the adjacent West Philippine Basin and Parece Vela Basin(PVB), indicating a typical oceanic crust. Isostatic analysis shows that some regional compensation occurs during the loading of the KPR, which implies that the KPR was built mainly by magmatism during the splitting of the Izu-Bonin-Mariana arc and the following back-arc seafloor spreading of the PVB during30–28 Ma BP. The absence of the thick middle crust(6.0–6.5 km/s) and high velocity lower-crustal layers(7.2–7.6 km/s) suggest that arc magmatism plays a less important role in the KPR formation.展开更多
As anticipated from studies of ophiolite complexes,direct investigations of the oceanic crust confirm that basaltic dikes are an integral part of the upper 2 km of the oceanic crust.Currently available information sug...As anticipated from studies of ophiolite complexes,direct investigations of the oceanic crust confirm that basaltic dikes are an integral part of the upper 2 km of the oceanic crust.Currently available information suggests展开更多
The isotopic signature of mid\|ocean ridge basalts (MORB) from the Indian Ocean is different from that of MORB from the Pacific and North\|Atlantic oceans.. The Indian MORB is characterized by lower 206 Pb/ 204 Pb, hi...The isotopic signature of mid\|ocean ridge basalts (MORB) from the Indian Ocean is different from that of MORB from the Pacific and North\|Atlantic oceans.. The Indian MORB is characterized by lower 206 Pb/ 204 Pb, hi gher 87 Sr/ 86 Sr, and lower 206 Pb/ 204 Pb for given 143 Nd/ 144 Nd than the latter (Hart, 1984; Castillo, 1988; Mahoney et al., 1998). Why the Indian Ocean mantle domain is different from the Pacific and North\|Atlantic ocean mantle domain is still unclear. Two general classes of hypotheses have been proposed to explain the origin of Indian mantle (Mahoney et al., 1998). The first one is that the components of the Indian Ocean mantle domain are a fairly young mantle end\|member created during the processes of breakup of the Gondwana continent to form the Indian Ocean. The second hypothesis posits that the Indian MORB\|type isotopic signature is a long\|lived mantle domain that existed prior to the formation of the present Indian Ocean. Thus it appears that one of the keys to a better understanding of origin of the Indian Ocean\|type isotopic signature depends on its age. Although some studies (Mahoney et al., 1998; Weis and Frey, 1997) showed that the isotopic signature was as old as the Indian ocean crust (140Ma), basalts investigated in the Indian Ocean region do not prove or disprove the existence of the Indian MORB\|type isotopic signature prior to the Indian Ocean because they were taken from the Indian ocean basin itself.展开更多
Oceanic crust expansion belt is the largest extensional structure on the earth. All the crustal movement theories have to face the phenomenon of oceanic crust expansion. The paper tries to interpret the phenomenon of ...Oceanic crust expansion belt is the largest extensional structure on the earth. All the crustal movement theories have to face the phenomenon of oceanic crust expansion. The paper tries to interpret the phenomenon of oceanic crust expansion by the volume change of the earth and the satellite data. The oceanic crust expansion is the result of the volume change of the earth. The volume change of the earth’s mantle is the element causing the volume change of the earth;the state variation of the solid matters within the earth is the element leading to the volume increase of the earth’s mantle;while the discharge of liquid matters within the earth is the element leading to the volume decrease of the earth’s mantle. The process of oceanic crust expansion can be divided into two phases—expansion and top mounting. The phase of expansion is the volume increase of the earth’s mantle, that is, the state variation of the solid matters within the earth leading to the oceanic crust expansion. The phase of top mounting is the volume decrease of the earth’s mantle;that is, the matters of the earth’s mantle (new oceanic crust) are uplifted to be the oceanic crust matters under the action of buoyancy, which is one of the ways to discharge the matters within the earth. The expansion phase of the oceanic crust is the extensional movement period of the earth’s crust. The top mounting phase of the oceanic crust is the compressive movement period of the earth’s crust, that is, the subduction period of the oceanic crust. The speed of oceanic crust expansion is related to the state variation speed of the matters within the earth. The width of the oceanic crust expansion is related to the temperature of the seawater. The temperature of the hydrothermal flow in the oceanic crust expansion belt is related to the speed of oceanic crust expansion. The oceanic ridge terrain in the oceanic crust expansion is related to the thickness of the same density stratification above the earth’s mantle.展开更多
We present the first evidence of Archean oceanic crust submitted to Proterozoic high-pressure(HP)metamorphism in the South American Platform.Sm-Nd and Lu-Hf isotopic data combined with U-Pb geochronological data from ...We present the first evidence of Archean oceanic crust submitted to Proterozoic high-pressure(HP)metamorphism in the South American Platform.Sm-Nd and Lu-Hf isotopic data combined with U-Pb geochronological data from the Campo Grande area,Rio Grande do Norte domain,in the Northern Borborema Province,reflect a complex Archean(2.9 Ga and 2.6 Ga)and Paleoproterozoic(2.0 Ga)evolution,culminating in the Neoproterozoic Brasiliano/Pan-African orogeny(ca.600 Ma).The preserved mafic rocks contain massive poikiloblastic garnet and granoblastic amphibole with variable proportions of plagioclase+diopside in symplectitic texture,typical of high-pressure rocks.These clinopyroxene-garnet amphibolites and the more common garnet amphibolites from the Campo Grande area are exposed as rare lenses within an Archean migmatite complex.The amphibolite lenses represent 2.65 Ga juvenile tholeiitic magmatism derived from depleted mantle sources(positive values of+3.81 to+30.66)later enriched by mantle metasomatism(negative εNd(t)values of-7.97).Chondrite and Primitive Mantle-normalized REE of analyzed samples and discriminant diagrams define two different oceanic affinities,with E-MORB and OIB signature.Negative Eu anomalies(Eu/Eu*=0.75-0.95)indicate depletion of plagioclase in the source.Inherited zircon cores of 3.0-2.9 Ga in analyzed samples indicate that the Neoarchean tholeiitic magmatism was emplaced into 2923±14 Ma old Mesoarchean crust(εNd(t)--2.58 and Nd TDM=3.2 Ga)of the Rio Grande do Norte domain.The age of retro-eclogite facies metamorphism is not yet completely understood.We suggest that two high-grade metamorphic events are recognized in the mafic rocks:the first at 2.0 Ga,recorded in some samples,and the second,at ca.600 Ma,stronger and more pervasive and recorded in several of the mafic rock samples.The Neoproterozoic zircon grains are found in symplectite texture as inclusions in the garnet grains and represent the age of HP conditions in the area.These zircon grains show a younger cluster of concordant analyses between 623±3 Ma and 592±5 Ma withεHf(t)values of+0.74 to-65.88.Thus,the Campo Grande rock assemblage is composed of Archean units that were amalgamated to West Gondwana during Neoproterozoic Brasiliano orogeny continent-continent collision and crustal reworking.展开更多
The osmium-isotope mismatch commonly reported between mid-ocean-ridge basalts(MORBs) and residual mantle might reflect evolution of the MORB Re-Os system after extraction from the asthenosphere, or preferential contri...The osmium-isotope mismatch commonly reported between mid-ocean-ridge basalts(MORBs) and residual mantle might reflect evolution of the MORB Re-Os system after extraction from the asthenosphere, or preferential contribution of radiogenic Os components from mantle. However, in a MOR system, the role of dunite melt channels from the upper mantle and Moho transition zone in regulating isotopic systems between mantle and crust has rarely been evaluated. We report new Re-Os isotopic compositions of base-metal sulfides(BMS), chromites and dunites from dunite lenses with low spinel Cr# [Cr3+/(Cr3++Al3+) ≤ 0.66](products of interaction between MORB-like melts and upper-mantle harzburgites) from the Zedang ophiolite(South Tibet). Re-Os isotopic compositions of low-Cr# dunites from the Oman ophiolite are also shown for comparison. Mineralogical evidence suggests that the Zedang sulfides were originally precipitated as monosulfide solid solutions. The highly variable 187Os/188Os initial ratios(0.1191-0.1702) and low 187Re/188Os(<0.22) of the sulfides suggest that the chromite acted as a sink for Os-bearing sulfides, aggregating discrete Os components with heterogeneous isotopic signatures from asthenospheric or lithospheric mantle into dunite channels. The Zedang chromites and dunites show 187Os/188Os ratios similar to the primitive upper mantle(PUM), except for two dunites with sub-PUM ratios, reflecting the contribution of Os balanced by smaller volumes of Os-rich, unradiogenic sulfides(likely nucleating on Os nanoparticles) and larger volumes of Os-poor radiogenic BMS. Such isotopic heterogeneity, despite with less variation, has been observed in dunite channels from the Oman ophiolite and present-day mid-ocean ridges. Formation of dunite channels in the upper mantle thus can aggregate Os-bearing sulfides with chromite, leaving high Re/Os components into the residual melts. Once such channel systems were built up at the crust-mantle transition zone, the newly incoming MOR magmas would preferentially melt and dissolve the volumetrically abundant radiogenic BMS and retain Os-rich nanoparticles in the channels, further amplifying the Os-isotope mismatch between oceanic crust and mantle. This study sheds new light on the multistage evolution and small-scale behaviors of chalcophile and siderophile elements(e.g., Re-Os) and their isotopes(e.g., 187Re-187Os) with sulfides and chromites in a silicate-dominated melt plumbing system beneath mid-ocean ridges.展开更多
Ultra-high pressure(UHP)eclogites that derive from subducted oceanic crust are rarely found at the Earth’s surface because they need to be enclosed in a buoyant host rock such as serpentinites that facilitate exhum...Ultra-high pressure(UHP)eclogites that derive from subducted oceanic crust are rarely found at the Earth’s surface because they need to be enclosed in a buoyant host rock such as serpentinites that facilitate exhumation(Hermann et al.,2000;Guillot et al.,2001).Under normal subduction geotherms,serpentinites break down just before UHP conditions are reached and therefore most of the exhumed eclogites representing subducted oceanic crust formed under fore-arc conditions.We investigated eclogite blocks enclosed into serpentinites that occur in the southwestern Tianshan oceanic subduction,China.A previous study proved that the serpentinites derive from altered oceanic crust and experienced UHP metamorphism at low temperatures of 510-530°C(Shen et al.,2015).Three relatively fresh eclogite samples were studied in detail.Sample 129-7 shows the retrograde mineral assemblage of amphibole+biotite+albite+chlorite+minor titanite and peak metamorphic relics of omphacite+garnet±chlorite.Sample C107-23 is mainly composed of amphibole+albite+chlorite+zoisite+muscovite+minor titanite as a retrograde assemblage and garnet+phengite as the peak metamorphic relics with omphacite only found as inclusions in garnet.Similar to sample C107-23,sample C11066 preserves large-grained euhedral to subhedral garnet relics with omphacite inclusions,and epidote,diopside,amphibole,muscovite,chlorite,albite and biotite are in the matrix belong to the retrograde assemblage.These three retrograde eclogite samples were modelled using thermodynamic calculations in the Mn NCKFMSHO(Mn O-Na;O-Ca O-K;O-FeO-Mg O-Al;O;-SiO;-H;O-Fe;O;)system.Based on the peak assemblage of omphacite+garnet and the crossing of the grossular and pyrope isopleths in garnet,peak P-T conditions of;60-470oC,28-29 kbar(129-7),450-500oC,28-35 kbar(C107-23),;75-505oC,26-29 kbar(C11066)were calculated.The retrograde assemblages indicate near isothermal decompression resulting in a clockwise P-T evolution of these eclogites.The peak metamorphic pressures at 500°C are well within UHP conditions(coesite stability field)and are within error the same as peak conditions of the host serpentinites(Shen et al.,2015).This provides evidence that eclogites and serpentinites shared the same evolution.We infer that the subducted low-density serpentinites were assembled with the high-density eclogites during subdution and helped the latter to exhume back to the surface.The studied eclogites thus represent rare examples of relics of oceanic crust that was subducted to sub-arc depth.展开更多
Ultra-high pressure(UHP)eclogites that derive from subducted oceanic crust are rarely found at the Earth’s surface because they need to be enclosed in a buoyant host rock such as serpentinites that facilitate exhumation
Evidence for a mantle and/or basaltic component in KT boundary distal ejecta is apparently inconsistent with ejection from Chicxulub Crater since it is located on;5km thick continental crust(De Paolo et al.,1983;Mont...Evidence for a mantle and/or basaltic component in KT boundary distal ejecta is apparently inconsistent with ejection from Chicxulub Crater since it is located on;5km thick continental crust(De Paolo et al.,1983;Montanari et al.,1983;Hildebrand and Boynton,1988,1990).This evidence,along with ejected terrestrial chromites(Olds et al.,2016)suggest the impact sampled terrestrial mafic and/or ultramafic target rocks which are not known to exist in the Chicxulub target area.Possible resolutions to the paradox are:1)the existence of an unmapped/unknown suture in Yucatan Platform basement,2)an additional small unmapped/unknown impact site on oceanic lithosphere,or 3)an additional large impact on oceanic lithosphere or continental margin transitional to oceanic lithosphere.The third hypothesis is elaborated here since:1)Ophiolites nearest to Chicxulub crater are found in Cuba and apparently were obducted in latest Cretaceous/earliest Danian times(García-Casco,2008),inconsistent with the documented Eocene collision of Cuba with the Bahamas platform;and 2)Cuba hosts the world’s thickest known KT boundary deposits(Iturralde-Vinent,1992;Kiyokawa et al.,2002;Tada et al.,2003).These and geometric considerations suggest oceanic crust and upper mantle rock,exposed as ophiolite in the Greater Antilles island chain,marks the rim of a roughly 700 km diameter impact basin deformed and dismembered from an originally circular form by at least 50 million years of left-lateral shear displacement along the North American-Caribbeantransform plate boundary.展开更多
The Nadingcuo high-K calc-alkaline rocks mainly composed of trachyte and trachyandesite are the largest outcrop area of volcanic rocks in southern Qiangtang terrane in the Tibetan plateau. However,their exact source a...The Nadingcuo high-K calc-alkaline rocks mainly composed of trachyte and trachyandesite are the largest outcrop area of volcanic rocks in southern Qiangtang terrane in the Tibetan plateau. However,their exact source and peterogenesis are still debated.^(40)Ar-^(39)Ar and LAM-ICPMS zircon U-Pb isotopic dating confirm that these rocks erupted in Eocene.In addition,the Nadingcuo volcanic rocks are characterized by high Sr/Y content ratios,similar with the adakite derived from partial melting of oceanic crust.They can be further classified as high Mg~#(Mg~#=48-57) and low Mg~# (Mg~#=33-42) subtypes.The Nadingcuo adakitic rocks have relatively low(^(87)Sr/^(86)Sr)_i and highε_(Nd)(t), showing a trend of similarity to the Dongcuo ophiolite present in the Bangong-Nujiang oceanic crust. Simple modeling indicates that the Nadingcuo adakitic rocks are a mix resulting from the basalt of Bangong-Nujiang Ocean with 10%-20%crustal material of Lhasa terrane.On these bases we suggest that the low Mg~# Nadingcuo adakitic rocks are the product of partial melting of remnant oceanic crust with small sediment,and the high Mg~# rocks are the result of reaction between rising melt of remnant oceanic crust with subducted sediment and mantle wedge.Therefore,the origin of Nadingcuo adakitic rocks may be related to intracontinental subduction triggered by collision of India-Asia during Cenozoic.展开更多
The paper focuses on the characteristics of faulting and magmatism of the Okinawa Trough and the relation between them. En-echelon grabens are ranked oblique to the continental shelf edge uplift, and the Longwang upli...The paper focuses on the characteristics of faulting and magmatism of the Okinawa Trough and the relation between them. En-echelon grabens are ranked oblique to the continental shelf edge uplift, and the Longwang uplift, the rifting block ridge in the northern segment and the "Mianhua uplift" in the southern segment have possibly preserved characteristics of volcanism and magmatism occurring with those rifting phases. The clockwise rotation of the southern Ryukyu Islands, driven by collision between Luzon and Taiwan, has played a key role in the crustal oceanization, enhancing the crustal extension of the southern segment and inducing volcanic magmatism in those grabens, among which the Yaeyama graben is a typical example of the presence of oceanic crust. Faulting and magmatism were mainly migrating towards the island arc asymmetrically. The crustal oceanization of the Okinawa Trough is difficultly interpreted by the linear magnetic anomaly model, which is fit for the symmetric spreading of the mid-oceanic ridges.展开更多
Rare earth elements(REEs) and major elements of 25 cobalt-rich crusts obtained from different depths of Mid-Pacific M seamount were analyzed using inductively coupled plasma-atomic emission spectrometer and gravimet...Rare earth elements(REEs) and major elements of 25 cobalt-rich crusts obtained from different depths of Mid-Pacific M seamount were analyzed using inductively coupled plasma-atomic emission spectrometer and gravimetric method.The results showed that they were hydrogenous crusts with average ∑REE content of 2084.69 μg/g and the light REE(LREE)/heavy REE(HREE) ratio of 4.84.The shale-normalized REE patterns showed positive Ce anomalies.The total content of strictly trivalent REEs increased with water depth.The Ce content and LREE/HREE ratios in Fe-Mn crusts above 2000 m were lower than those below 2000 m.The change in REE with water depth could be explained by two processes:adsorptive scavenging by setting matters and behaviors of REE in seawater.However, the Ce abundance took no obvious correlation with water depth reflects the constant Ce flux.The Ce in crusts existed mainly as Ce(IV), implying that the oxidative-enriching process was controlled by kinetic factors.展开更多
In 2001, the International Seabed Authority (ISBA) initiated the consideration relating to the Regulations for Prospecting and Exploration for Hydrothermal Polymetallic Sulphides and Cobalt-rich Ferromanganese Crust...In 2001, the International Seabed Authority (ISBA) initiated the consideration relating to the Regulations for Prospecting and Exploration for Hydrothermal Polymetallic Sulphides and Cobalt-rich Ferromanganese Crusts in the Area at its 7th session. Since then, the consideration of the Regulations has been mainly focused on the size of areas to be allocated for exploration and exploitation of the crusts. This paper, based on the investigation data and the analysis of the distribution characteristics of the crusts, suggests a model for determining the size of areas for exploration and exploitation of the crusts, taking into account various factors such as production scale, crust thickness and grade, mineable area proportion, recovery efficiency, exploration venture, and so on. Through the modeling, the paper suggests that the exploration area (the area covered by each application for approval of a plan of work for exploration of cobalt-rich crusts) shall be 4 856 km2 and the exploitation area (the mine site area) shall be 1 214 km2, for 20 years of 1 million wet tonnes annual production.展开更多
A biostratigraphic study on calcareous nannofossils from the CM3D06 Co-rich ferromanganese crust from the Magellan seamounts in the northwestern Pacific enabled estimation of depositional age. The bio-imprinting of ca...A biostratigraphic study on calcareous nannofossils from the CM3D06 Co-rich ferromanganese crust from the Magellan seamounts in the northwestern Pacific enabled estimation of depositional age. The bio-imprinting of calcareous nannofossils and other fossil species suggests six age ranges for the nannofossils: late Cretaceous, late Paleocene, (early, middle, late) Eocene, middle Miocene, late Pliocene, and Pleistocene. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) were used to test the Co-rich crusts, and a variety of molecular fossils were detected, such as chloroform bituminous "A" , n-alkane, isoprenoid and sterol. Peak carbon and molecular indices (such as C23-/C24+, CPI, Pr/Ph, Pr/nC17, Ph/nCxs and j13C) indicate that the parent organic matter is dominated by marine phytoplankton and thallogen whereas there is little input of terrestrial organic matter. Researches on calcareous nannofossils, molecular fossils and molecular organic geochemistry data reveal that the Paleocene/Eocene (P/E) global event is recorded in the cobalt- rich crusts from the northwestern Pacific Ocean. A succession of biomes can be observed near the 85 mm boundary (about 55 Ma), i.e., the disappearance of the late Cretaceous Watznaueria barnesae and Zigodicus spiralis, and Broisonia parka microbiotas above the P/E boundary, and the bloom of Coccolithus formosus, Discoaster multiradiatus, Discoaster mohleri and Discoaster sp. below the boundary. Typical parameters of molecular fossils, such as saturated hydrocarbon components and carbon-number maxima, Pr/Ph, Pr/C17, Ph/C18, distribution types of sterols, Ts/Tm ratios and bacterial hopane, also exhibit dramatic changes near the P/E boundary. These integrated results illustrate that the biome succession of calcareous nannofossils, relative content of molecular fossils and molecular indices in the cobalt-rich crusts near the 85 mm boundary faithfully record the P/E global event.展开更多
文摘Noble gas isotopic compositions of various layers in three-layered (outer, porous and compact layers) cobalt-rich ferromanganese crusts and their basaltic and phosphorite substrates from the western Pacific Ocean were analyzed by using a high vacuum gas mass spectrum. The analytical results show that the noble gases in the Co-rich crusts have derived mainly from the ambient seawater, extraterrestrial grains such as interplanetary dust particles (IDPs) and wind-borne continental dust grains, and locally formation water in the submarine sediments, but different noble gases have different sources. He in the crusts derives predominantly from the extraterrestrial grains, with a negligible amount of radiogenic He from the eolian dust grains. Ar is sourced mainly from the dissolved air in the seawater and insignificantly from radiogenic Ar in the eolian continental dust grains or the formation water. Xe and Ne derive mainly from the seawater, with minor amounts of extraterrestrial Xe and Ne in the IDPs. Compared with the porous and outer layers, the compact layer has a relatively high 4He content and lower 3He/4He ratios, suggesting that marine phosphatization might have greatly modified the noble gas isotopic compositions of the crusts. Besides, the 3He/4He values of the basaltic substrates of the cobalt-rich crusts are very low and their R/R. ratios are mostly 〈0.1 R., which are similar to that of phosphorite substrates (0.087 R.), but much lower than that of fresh submarine MORB (8.75±14 Ra) or seamount basalts (3-43 Ra), implying that the basaltic substrates have suffered strong water/rock interaction and reacted with radiogenic ^4He and P-rich upwelling marine currents during phosphatization. The trace elements released in the basalt/seawater interaction might favor the growth of cobalt-rich crusts. The relatively low ^3He/^4He values in the seamount basalts may be used as an important exploration criterion for the cobalt-rich ferromanganese crusts.
基金part of H.J.'s MSc thesis project (PIPGSTS-16-16)conducted at the Petroleum Institute,UAE.
文摘Several types of felsic granitoid rocks have been recognized, intrusive in both the mantle and the crustal sequence of the Semail ophiolite. Several models have been proposed for the source of this suite of tonalites, granodiorites, trondhjemites intrusions, however their genesis is still not clearly understood.The sampled Dadnah tonalites that intruded in the mantle section of the Semail ophiolite display arctype geochemical characteristics, are high siliceous, low-potassic, metaluminous to weakly peraluminous, enriched in LILE, show positive peaks for Ba, Pb, Eu, negative troughs for U, Ti and occur with low δ^(18)O_(H_2 O), moderate ε_(Sr) and negative eNd values. They have crystallized at temperatures that range from~550 ℃ to ~720 ℃ and pressure ranging from 4.4 kbar to 6.5 kbar. The isotopic ages from our tonalite samples range between 98.6 Ma and 94.9 Ma, slightly older and overlapping with the age of the metamorphic sole. Our field observations, mineralogical, petrological, geochemical, isotopic and melt inclusion data suggest that the Dadnah tonalites formed by partial melting(~10%-15% continuous or ~12% batch partial melting), accumulation of plagioclase, fractional crystallization(~55%-57%), and interaction with their host harzburgites. These tonalites were the end result of partial melting and subsequent contamination and mixing of ~4% oceanic sediments with ~96% oceanic lithosphere from the subducted slab. This MORB-type slab melt composed from ~97% recycled oceanic crust and ~3% of the overlying mantle.We suggest that a possible protolith for these tonalites was the basaltic lavas from the subducted oceanic slab that melted during the initial stages of the supra-subduction zone(SSZ), which was forming synchronously to the spreading ridge axis. The tonalite melts mildly modified due to low degree of mixing and interaction with the overlying lithospheric mantle. Subsequently, the Dadnah tonalites emplaced at the upper part of the mantle sequence of the Semail ophiolite and are geochemically distinct from the other mantle intrusive felsic granitoids to the south.
文摘Cooling of the Earth's mantle since the Meso-Archean is predicted by thermal and petrological models to have induced a secular change in the composition of primary mantle-derived magmas-and thus bulk oceanic crust; in particular, suggesting a decrease in maficity over time. This hypothesis underpins several recent studies that have addressed key geological questions concerning evolving plate tectonic styles, the rates and timing of continental crust formation, comparative planetology, and the emergence of complex life on Earth. Major, minor, and trace element geochemical analyses of(meta)mafic rocks preserved in the geological record allows exploration of this theory, although no consensus currently exists about the magnitude of this change and what compositions-if anything-constitute representative examples of Paleo-, Meso-, or Neo-Archean primitive oceanic crust. In this work, we review the current state of understanding of this issue, and use phase equilibria to examine the different mineral assemblages and rock types that would form during metamorphism of basalt of varying maficity in subduction zone environments. The presence(or absence) of such metamorphic products in the geological record is often used as evidence for(or against) the operation of modern-day subductiondriven plate tectonics on Earth at particular time periods; however, the control that secular changes in composition have on the stability of mineral assemblages diagnostic of subduction-zone metamorphism weakens such uniformitarianistic approaches. Geodynamic interpretations of the Archean metamorphic rock record must therefore employ a different set of petrological criteria for determining tectonothermal histories than those applied to Proterozoic or Phanerozoic equivalents.
基金The National Natural Science Foundation of China(NSFC)under contract Nos 41076072 and 40676025the Shandong Provincial Natural Science Foundation under contract No.ZR2011EMQ010
文摘Organic matter in cobalt-rich crust (CRC) from the Marcus-Wake Seamounts of the western Pacific Ocean, Sample CM1D03, has been analyzed to understand the source, geochemistry and mineralization of organic matter, and the mineralization environment. Biomarkers, includingn-alkanes, isoprenoids, terpanes and sterols, have been detected in various layers of the CRC sample, using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The content of organic carbon (OC) and its stable isotope (δ13C), and the combined features of the biomarkers show that the mineralized organic matter in CM1D03 CRC was mainly derived from microorganisms and lower plankton (e.g., bacteria and algae, respectively) from marine surface water, with some terrestrial higher plant components. The ratio of chloroform bitu-men "A": OC was high in the CRC, between 10.51 and 20.66, showing significant migration characteristics of n-alkanes. Four mineralization categories of organic matter were recognized based on GC chromatograms ofn-alkane molecules: (1) primitive type (bacteria and algae), which is characterized by moderately mature ofn-alkanes preserving the original characteristics of the organic matter from microorganisms and lower plankton; (2) microbial degradation type, which is characterized by low contents ofn-alkanes and rising baseline in the chromatogram, with the "bulge" being the products of organic matter by biodegradation; (3) organic matter migration type, which is characterized by low carbon number ofn-alkanes withnC18 as the main peak carbon, without odd even predominance, and low concentrations of isoprenoids and hydro-carbons with high carbon number; and (4) organic matter hydrothermal type, which is characterized by relatively low concentration of small molecular weightn-alkanes, pristane, and phytane, accompanied by higher concentration ofn-alkanes with carbon number greater thannC18. This study shows that biomarkers can record controlling factors of mineralization and their variation.
基金The fund of Laoshan Laboratory under contract Nos LSKJ202203602 and LSKJ202204103the China Ocean Mineral Resource Research and Development Association Research Program under contract No.DY135-C1-1-04the Taishan Scholarship from Shandong Province.
文摘To explore the occurrence phases and enrichment mechanism of rare earth elements(REEs)in cobalt-rich crusts,this study analyzes the mineral composition and REE contents of the samples from Marcus-Wake Seamounts by XRD,ICP-OES and ICP-MS.The results show that,(1)the cobalt-rich crusts contain the major crystalline mineral(vernadite),the secondary minerals(quartz,plagioclase and carbonate fluorapatite),and a large amount of amorphous ferric oxyhydroxides(FeOOH).(2)The cobalt-rich crusts contains higher Mn(10.83%to 28.76%)and Fe(6.14%to 18.86%)relative to other elements,and are enriched in REEs,with total REE contents of 1563−3238μg/g and Ce contents of 790−1722μg/g.Rare earth element contents of the old crusts are higher than those of the new crusts.Moreover,the non-phosphatized crusts have positive Ce and negative Y anomalies,and yet the phosphatized crusts have positive Ce and positive Y anomalies,indicating that cobalt-rich crusts is hydrogenetic and REEs mainly come from seawater.(3)Analytical data also show that the occurrence phases of elements in cobalt-rich crusts are closely related to their mineral phases.In the non-phosphatized crusts,REEs are adsorbed by colloidal particles into the crusts(about 67%of REEs in the Fe oxide phase,and about 17%of REEs in the Mn oxide phase).In contrast,in the phosphatized crusts(affected by the phosphatization),REEs may combine with phosphate to form rare earth phosphate minerals,and about 64%of REEs are enriched in the residual phase containing carbonate fluorapatite,but correspondingly the influence of Fe and Mn oxide phases on REEs enrichment is greatly reduced.In addition,the oxidizing environment of seawater,high marine productivity,phosphatization,and slow growth rate can promote the REE enrichment.This study provides a reference for the metallogenesis of cobalt-rich crusts in the Pacific.
基金financially supportedby National Science Council.
文摘A contact zone sandwiched between an arc and an oceanic crust was discoveredin the Laohushan area in the present study. It consists of a series of north-dipping imbricatedthrust sheets and is exposed on the surface as a narrow arcuate belt, which extends for about 30 kmin an E-W direction and measures about 1-3 km wide. Lithologically, it can be divided into foursubzones. Subzone 1 consists of meta-andesite and metasandstone; subzone 2, psammitic schists;subzone 3, psammitic and pelitic schists, quartz diorite and hornfelses; and subzone 4, metagabbro,epidote amphibolite and pelitic schists. The metamorphism has the following grading sequence: lowgreenschist facies in subzone 1 - > high greenschist facies in subzone 2 - > low amphibolite fadesin subzone 3 - > epidote amphibolite facies in subzone 4. Petrographic and geochemical evidenceshows that rocks in subzones 1, 2 and 3 are arc rocks, whereas those of subzone 4 are oceaniccrustal rocks. The metamorphic mineral assemblages and especially mineral chemistry of the bluishgreen amphibole from the pelitic schists and epidote amphibolite of subzone 4 suggest that the rocksof the contact zone were metamorphosed at a pressure of up to 0.69 GPa. It is thought that theLate-Mid Ordovician oceanic lithosphere of a back-arc basin was underthrust northerly beneath an arcto a depth of 20-23 km, where the basaltic rocks and gabbro were converted to epidote amphiboliteand metagabbro respectively. Then, the root rocks of the arc and these metamorphosed oceanic rockswere brought up to shallower depths by thrust faults to form a contact zone between the arc and theoceanic crust in the Laohushan area.
基金The National Natural Science Foundation of China under contract Nos 91858214 and 41890811the Scientific Research Fund of the Second Institute of Oceanography,MNR under contract No. HYGG2001+2 种基金the National Natural Science Foundation of China under contract Nos 42006072, 41876060, 41776053 and 42076080the National Program on Global Change and Air-Sea Interaction,MNR under contact No. GASI-02-PAC-DWZP02the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) under contract No. 311020018。
文摘A new high-resolution velocity model of the southern Kyushu-Palau Ridge(KPR) was derived from an activesource wide-angle seismic reflection/refraction profile. The result shows that the KPR crust can be divided into the upper crust with the P-wave velocity less than 6.1 m/s, and lower crust with P-wave velocity between 6.1 km/s and 7.2 km/s. The crustal thickness of the KPR reaches 12.0 km in the center, which gradually decreases to 5.0–6.0 km at sides. The velocity structure of the KPR is similar to the structures of the adjacent West Philippine Basin and Parece Vela Basin(PVB), indicating a typical oceanic crust. Isostatic analysis shows that some regional compensation occurs during the loading of the KPR, which implies that the KPR was built mainly by magmatism during the splitting of the Izu-Bonin-Mariana arc and the following back-arc seafloor spreading of the PVB during30–28 Ma BP. The absence of the thick middle crust(6.0–6.5 km/s) and high velocity lower-crustal layers(7.2–7.6 km/s) suggest that arc magmatism plays a less important role in the KPR formation.
文摘As anticipated from studies of ophiolite complexes,direct investigations of the oceanic crust confirm that basaltic dikes are an integral part of the upper 2 km of the oceanic crust.Currently available information suggests
文摘The isotopic signature of mid\|ocean ridge basalts (MORB) from the Indian Ocean is different from that of MORB from the Pacific and North\|Atlantic oceans.. The Indian MORB is characterized by lower 206 Pb/ 204 Pb, hi gher 87 Sr/ 86 Sr, and lower 206 Pb/ 204 Pb for given 143 Nd/ 144 Nd than the latter (Hart, 1984; Castillo, 1988; Mahoney et al., 1998). Why the Indian Ocean mantle domain is different from the Pacific and North\|Atlantic ocean mantle domain is still unclear. Two general classes of hypotheses have been proposed to explain the origin of Indian mantle (Mahoney et al., 1998). The first one is that the components of the Indian Ocean mantle domain are a fairly young mantle end\|member created during the processes of breakup of the Gondwana continent to form the Indian Ocean. The second hypothesis posits that the Indian MORB\|type isotopic signature is a long\|lived mantle domain that existed prior to the formation of the present Indian Ocean. Thus it appears that one of the keys to a better understanding of origin of the Indian Ocean\|type isotopic signature depends on its age. Although some studies (Mahoney et al., 1998; Weis and Frey, 1997) showed that the isotopic signature was as old as the Indian ocean crust (140Ma), basalts investigated in the Indian Ocean region do not prove or disprove the existence of the Indian MORB\|type isotopic signature prior to the Indian Ocean because they were taken from the Indian ocean basin itself.
文摘Oceanic crust expansion belt is the largest extensional structure on the earth. All the crustal movement theories have to face the phenomenon of oceanic crust expansion. The paper tries to interpret the phenomenon of oceanic crust expansion by the volume change of the earth and the satellite data. The oceanic crust expansion is the result of the volume change of the earth. The volume change of the earth’s mantle is the element causing the volume change of the earth;the state variation of the solid matters within the earth is the element leading to the volume increase of the earth’s mantle;while the discharge of liquid matters within the earth is the element leading to the volume decrease of the earth’s mantle. The process of oceanic crust expansion can be divided into two phases—expansion and top mounting. The phase of expansion is the volume increase of the earth’s mantle, that is, the state variation of the solid matters within the earth leading to the oceanic crust expansion. The phase of top mounting is the volume decrease of the earth’s mantle;that is, the matters of the earth’s mantle (new oceanic crust) are uplifted to be the oceanic crust matters under the action of buoyancy, which is one of the ways to discharge the matters within the earth. The expansion phase of the oceanic crust is the extensional movement period of the earth’s crust. The top mounting phase of the oceanic crust is the compressive movement period of the earth’s crust, that is, the subduction period of the oceanic crust. The speed of oceanic crust expansion is related to the state variation speed of the matters within the earth. The width of the oceanic crust expansion is related to the temperature of the seawater. The temperature of the hydrothermal flow in the oceanic crust expansion belt is related to the speed of oceanic crust expansion. The oceanic ridge terrain in the oceanic crust expansion is related to the thickness of the same density stratification above the earth’s mantle.
基金the support of the INCT Estudos Tectônicos(CAPES/CNPq465613/2014-4 and FAPDF-193.001.263/2017)。
文摘We present the first evidence of Archean oceanic crust submitted to Proterozoic high-pressure(HP)metamorphism in the South American Platform.Sm-Nd and Lu-Hf isotopic data combined with U-Pb geochronological data from the Campo Grande area,Rio Grande do Norte domain,in the Northern Borborema Province,reflect a complex Archean(2.9 Ga and 2.6 Ga)and Paleoproterozoic(2.0 Ga)evolution,culminating in the Neoproterozoic Brasiliano/Pan-African orogeny(ca.600 Ma).The preserved mafic rocks contain massive poikiloblastic garnet and granoblastic amphibole with variable proportions of plagioclase+diopside in symplectitic texture,typical of high-pressure rocks.These clinopyroxene-garnet amphibolites and the more common garnet amphibolites from the Campo Grande area are exposed as rare lenses within an Archean migmatite complex.The amphibolite lenses represent 2.65 Ga juvenile tholeiitic magmatism derived from depleted mantle sources(positive values of+3.81 to+30.66)later enriched by mantle metasomatism(negative εNd(t)values of-7.97).Chondrite and Primitive Mantle-normalized REE of analyzed samples and discriminant diagrams define two different oceanic affinities,with E-MORB and OIB signature.Negative Eu anomalies(Eu/Eu*=0.75-0.95)indicate depletion of plagioclase in the source.Inherited zircon cores of 3.0-2.9 Ga in analyzed samples indicate that the Neoarchean tholeiitic magmatism was emplaced into 2923±14 Ma old Mesoarchean crust(εNd(t)--2.58 and Nd TDM=3.2 Ga)of the Rio Grande do Norte domain.The age of retro-eclogite facies metamorphism is not yet completely understood.We suggest that two high-grade metamorphic events are recognized in the mafic rocks:the first at 2.0 Ga,recorded in some samples,and the second,at ca.600 Ma,stronger and more pervasive and recorded in several of the mafic rock samples.The Neoproterozoic zircon grains are found in symplectite texture as inclusions in the garnet grains and represent the age of HP conditions in the area.These zircon grains show a younger cluster of concordant analyses between 623±3 Ma and 592±5 Ma withεHf(t)values of+0.74 to-65.88.Thus,the Campo Grande rock assemblage is composed of Archean units that were amalgamated to West Gondwana during Neoproterozoic Brasiliano orogeny continent-continent collision and crustal reworking.
基金supported by the National Natural Science Foundation of China(41520104003,41873032&41822301)the Fundamental Research Funds for the Central Universities,CUG Wuhan(CUG180604,CUGCJ1709)+1 种基金the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources(CUG,MSFGPMR15)the CCFS ARC Centre of Excellence
文摘The osmium-isotope mismatch commonly reported between mid-ocean-ridge basalts(MORBs) and residual mantle might reflect evolution of the MORB Re-Os system after extraction from the asthenosphere, or preferential contribution of radiogenic Os components from mantle. However, in a MOR system, the role of dunite melt channels from the upper mantle and Moho transition zone in regulating isotopic systems between mantle and crust has rarely been evaluated. We report new Re-Os isotopic compositions of base-metal sulfides(BMS), chromites and dunites from dunite lenses with low spinel Cr# [Cr3+/(Cr3++Al3+) ≤ 0.66](products of interaction between MORB-like melts and upper-mantle harzburgites) from the Zedang ophiolite(South Tibet). Re-Os isotopic compositions of low-Cr# dunites from the Oman ophiolite are also shown for comparison. Mineralogical evidence suggests that the Zedang sulfides were originally precipitated as monosulfide solid solutions. The highly variable 187Os/188Os initial ratios(0.1191-0.1702) and low 187Re/188Os(<0.22) of the sulfides suggest that the chromite acted as a sink for Os-bearing sulfides, aggregating discrete Os components with heterogeneous isotopic signatures from asthenospheric or lithospheric mantle into dunite channels. The Zedang chromites and dunites show 187Os/188Os ratios similar to the primitive upper mantle(PUM), except for two dunites with sub-PUM ratios, reflecting the contribution of Os balanced by smaller volumes of Os-rich, unradiogenic sulfides(likely nucleating on Os nanoparticles) and larger volumes of Os-poor radiogenic BMS. Such isotopic heterogeneity, despite with less variation, has been observed in dunite channels from the Oman ophiolite and present-day mid-ocean ridges. Formation of dunite channels in the upper mantle thus can aggregate Os-bearing sulfides with chromite, leaving high Re/Os components into the residual melts. Once such channel systems were built up at the crust-mantle transition zone, the newly incoming MOR magmas would preferentially melt and dissolve the volumetrically abundant radiogenic BMS and retain Os-rich nanoparticles in the channels, further amplifying the Os-isotope mismatch between oceanic crust and mantle. This study sheds new light on the multistage evolution and small-scale behaviors of chalcophile and siderophile elements(e.g., Re-Os) and their isotopes(e.g., 187Re-187Os) with sulfides and chromites in a silicate-dominated melt plumbing system beneath mid-ocean ridges.
文摘Ultra-high pressure(UHP)eclogites that derive from subducted oceanic crust are rarely found at the Earth’s surface because they need to be enclosed in a buoyant host rock such as serpentinites that facilitate exhumation(Hermann et al.,2000;Guillot et al.,2001).Under normal subduction geotherms,serpentinites break down just before UHP conditions are reached and therefore most of the exhumed eclogites representing subducted oceanic crust formed under fore-arc conditions.We investigated eclogite blocks enclosed into serpentinites that occur in the southwestern Tianshan oceanic subduction,China.A previous study proved that the serpentinites derive from altered oceanic crust and experienced UHP metamorphism at low temperatures of 510-530°C(Shen et al.,2015).Three relatively fresh eclogite samples were studied in detail.Sample 129-7 shows the retrograde mineral assemblage of amphibole+biotite+albite+chlorite+minor titanite and peak metamorphic relics of omphacite+garnet±chlorite.Sample C107-23 is mainly composed of amphibole+albite+chlorite+zoisite+muscovite+minor titanite as a retrograde assemblage and garnet+phengite as the peak metamorphic relics with omphacite only found as inclusions in garnet.Similar to sample C107-23,sample C11066 preserves large-grained euhedral to subhedral garnet relics with omphacite inclusions,and epidote,diopside,amphibole,muscovite,chlorite,albite and biotite are in the matrix belong to the retrograde assemblage.These three retrograde eclogite samples were modelled using thermodynamic calculations in the Mn NCKFMSHO(Mn O-Na;O-Ca O-K;O-FeO-Mg O-Al;O;-SiO;-H;O-Fe;O;)system.Based on the peak assemblage of omphacite+garnet and the crossing of the grossular and pyrope isopleths in garnet,peak P-T conditions of;60-470oC,28-29 kbar(129-7),450-500oC,28-35 kbar(C107-23),;75-505oC,26-29 kbar(C11066)were calculated.The retrograde assemblages indicate near isothermal decompression resulting in a clockwise P-T evolution of these eclogites.The peak metamorphic pressures at 500°C are well within UHP conditions(coesite stability field)and are within error the same as peak conditions of the host serpentinites(Shen et al.,2015).This provides evidence that eclogites and serpentinites shared the same evolution.We infer that the subducted low-density serpentinites were assembled with the high-density eclogites during subdution and helped the latter to exhume back to the surface.The studied eclogites thus represent rare examples of relics of oceanic crust that was subducted to sub-arc depth.
文摘Ultra-high pressure(UHP)eclogites that derive from subducted oceanic crust are rarely found at the Earth’s surface because they need to be enclosed in a buoyant host rock such as serpentinites that facilitate exhumation
文摘Evidence for a mantle and/or basaltic component in KT boundary distal ejecta is apparently inconsistent with ejection from Chicxulub Crater since it is located on;5km thick continental crust(De Paolo et al.,1983;Montanari et al.,1983;Hildebrand and Boynton,1988,1990).This evidence,along with ejected terrestrial chromites(Olds et al.,2016)suggest the impact sampled terrestrial mafic and/or ultramafic target rocks which are not known to exist in the Chicxulub target area.Possible resolutions to the paradox are:1)the existence of an unmapped/unknown suture in Yucatan Platform basement,2)an additional small unmapped/unknown impact site on oceanic lithosphere,or 3)an additional large impact on oceanic lithosphere or continental margin transitional to oceanic lithosphere.The third hypothesis is elaborated here since:1)Ophiolites nearest to Chicxulub crater are found in Cuba and apparently were obducted in latest Cretaceous/earliest Danian times(García-Casco,2008),inconsistent with the documented Eocene collision of Cuba with the Bahamas platform;and 2)Cuba hosts the world’s thickest known KT boundary deposits(Iturralde-Vinent,1992;Kiyokawa et al.,2002;Tada et al.,2003).These and geometric considerations suggest oceanic crust and upper mantle rock,exposed as ophiolite in the Greater Antilles island chain,marks the rim of a roughly 700 km diameter impact basin deformed and dismembered from an originally circular form by at least 50 million years of left-lateral shear displacement along the North American-Caribbeantransform plate boundary.
基金supported by the following projects:National Basic Research Program of China (2009CB421004,2009CB421003)Natural Science Foundation of China(41073033,40872055,and 40930316)+1 种基金Chinese Academy of Sciences(KZCX2-YW-Q04)China Geological Survey(1212010818098)
文摘The Nadingcuo high-K calc-alkaline rocks mainly composed of trachyte and trachyandesite are the largest outcrop area of volcanic rocks in southern Qiangtang terrane in the Tibetan plateau. However,their exact source and peterogenesis are still debated.^(40)Ar-^(39)Ar and LAM-ICPMS zircon U-Pb isotopic dating confirm that these rocks erupted in Eocene.In addition,the Nadingcuo volcanic rocks are characterized by high Sr/Y content ratios,similar with the adakite derived from partial melting of oceanic crust.They can be further classified as high Mg~#(Mg~#=48-57) and low Mg~# (Mg~#=33-42) subtypes.The Nadingcuo adakitic rocks have relatively low(^(87)Sr/^(86)Sr)_i and highε_(Nd)(t), showing a trend of similarity to the Dongcuo ophiolite present in the Bangong-Nujiang oceanic crust. Simple modeling indicates that the Nadingcuo adakitic rocks are a mix resulting from the basalt of Bangong-Nujiang Ocean with 10%-20%crustal material of Lhasa terrane.On these bases we suggest that the low Mg~# Nadingcuo adakitic rocks are the product of partial melting of remnant oceanic crust with small sediment,and the high Mg~# rocks are the result of reaction between rising melt of remnant oceanic crust with subducted sediment and mantle wedge.Therefore,the origin of Nadingcuo adakitic rocks may be related to intracontinental subduction triggered by collision of India-Asia during Cenozoic.
基金The National Major Fundamental Research and Development Project of China under contract Nos G2000046703 and 2007CB411702the Scientific Research Fund of the Second Institute of Oceanography, State Oceanic Administration under contract No.JT0705
文摘The paper focuses on the characteristics of faulting and magmatism of the Okinawa Trough and the relation between them. En-echelon grabens are ranked oblique to the continental shelf edge uplift, and the Longwang uplift, the rifting block ridge in the northern segment and the "Mianhua uplift" in the southern segment have possibly preserved characteristics of volcanism and magmatism occurring with those rifting phases. The clockwise rotation of the southern Ryukyu Islands, driven by collision between Luzon and Taiwan, has played a key role in the crustal oceanization, enhancing the crustal extension of the southern segment and inducing volcanic magmatism in those grabens, among which the Yaeyama graben is a typical example of the presence of oceanic crust. Faulting and magmatism were mainly migrating towards the island arc asymmetrically. The crustal oceanization of the Okinawa Trough is difficultly interpreted by the linear magnetic anomaly model, which is fit for the symmetric spreading of the mid-oceanic ridges.
基金supported by the National Natural Science Foundation of China(40704029 40376016)+1 种基金China International Science and Technology Cooperation Project (2006DFB21620)the Young People Marine Science Foundation of State Oceanic Administration (2005304)
文摘Rare earth elements(REEs) and major elements of 25 cobalt-rich crusts obtained from different depths of Mid-Pacific M seamount were analyzed using inductively coupled plasma-atomic emission spectrometer and gravimetric method.The results showed that they were hydrogenous crusts with average ∑REE content of 2084.69 μg/g and the light REE(LREE)/heavy REE(HREE) ratio of 4.84.The shale-normalized REE patterns showed positive Ce anomalies.The total content of strictly trivalent REEs increased with water depth.The Ce content and LREE/HREE ratios in Fe-Mn crusts above 2000 m were lower than those below 2000 m.The change in REE with water depth could be explained by two processes:adsorptive scavenging by setting matters and behaviors of REE in seawater.However, the Ce abundance took no obvious correlation with water depth reflects the constant Ce flux.The Ce in crusts existed mainly as Ce(IV), implying that the oxidative-enriching process was controlled by kinetic factors.
基金China International Seabed Area R & D Program under contract No.DYXM-115-01-1
文摘In 2001, the International Seabed Authority (ISBA) initiated the consideration relating to the Regulations for Prospecting and Exploration for Hydrothermal Polymetallic Sulphides and Cobalt-rich Ferromanganese Crusts in the Area at its 7th session. Since then, the consideration of the Regulations has been mainly focused on the size of areas to be allocated for exploration and exploitation of the crusts. This paper, based on the investigation data and the analysis of the distribution characteristics of the crusts, suggests a model for determining the size of areas for exploration and exploitation of the crusts, taking into account various factors such as production scale, crust thickness and grade, mineable area proportion, recovery efficiency, exploration venture, and so on. Through the modeling, the paper suggests that the exploration area (the area covered by each application for approval of a plan of work for exploration of cobalt-rich crusts) shall be 4 856 km2 and the exploitation area (the mine site area) shall be 1 214 km2, for 20 years of 1 million wet tonnes annual production.
基金supported by National Natural Science Foundation of China (Grant Nos. 41076072 and 40676025)
文摘A biostratigraphic study on calcareous nannofossils from the CM3D06 Co-rich ferromanganese crust from the Magellan seamounts in the northwestern Pacific enabled estimation of depositional age. The bio-imprinting of calcareous nannofossils and other fossil species suggests six age ranges for the nannofossils: late Cretaceous, late Paleocene, (early, middle, late) Eocene, middle Miocene, late Pliocene, and Pleistocene. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) were used to test the Co-rich crusts, and a variety of molecular fossils were detected, such as chloroform bituminous "A" , n-alkane, isoprenoid and sterol. Peak carbon and molecular indices (such as C23-/C24+, CPI, Pr/Ph, Pr/nC17, Ph/nCxs and j13C) indicate that the parent organic matter is dominated by marine phytoplankton and thallogen whereas there is little input of terrestrial organic matter. Researches on calcareous nannofossils, molecular fossils and molecular organic geochemistry data reveal that the Paleocene/Eocene (P/E) global event is recorded in the cobalt- rich crusts from the northwestern Pacific Ocean. A succession of biomes can be observed near the 85 mm boundary (about 55 Ma), i.e., the disappearance of the late Cretaceous Watznaueria barnesae and Zigodicus spiralis, and Broisonia parka microbiotas above the P/E boundary, and the bloom of Coccolithus formosus, Discoaster multiradiatus, Discoaster mohleri and Discoaster sp. below the boundary. Typical parameters of molecular fossils, such as saturated hydrocarbon components and carbon-number maxima, Pr/Ph, Pr/C17, Ph/C18, distribution types of sterols, Ts/Tm ratios and bacterial hopane, also exhibit dramatic changes near the P/E boundary. These integrated results illustrate that the biome succession of calcareous nannofossils, relative content of molecular fossils and molecular indices in the cobalt-rich crusts near the 85 mm boundary faithfully record the P/E global event.