The development of oceanic remote sensing artificial intelligence has made possible to obtain valuable information from amounts of massive data.Oceanic internal waves play a crucial role in oceanic activity.To obtain ...The development of oceanic remote sensing artificial intelligence has made possible to obtain valuable information from amounts of massive data.Oceanic internal waves play a crucial role in oceanic activity.To obtain oceanic internal wave stripes from synthetic aperture radar(SAR)images,a stripe segmentation algorithm is proposed based on the TransUNet framework,which is a combination of U-Net and Transformer,which is also optimized.Through adjusting the number of Transformer layer,multi-layer perceptron(MLP)channel,and Dropout parameters,the influence of over-fitting on accuracy is significantly weakened,which is more conducive to segmenting lightweight oceanic internal waves.The results show that the optimized algorithm can accurately segment oceanic internal wave stripes.Moreover,the optimized algorithm can be trained on a microcomputer,thus reducing the research threshold.The proposed algorithm can also change the complexity of the model to adapt it to different date scales.Therefore,TransUNet has immense potential for segmenting oceanic internal waves.展开更多
This effort aims to determine the generation source sites in the Luzon Strait for energetic, long-crest, transbasin internal waves (IW) observed in the northern South China Sea (NSCS). The roles of islands distrib...This effort aims to determine the generation source sites in the Luzon Strait for energetic, long-crest, transbasin internal waves (IW) observed in the northern South China Sea (NSCS). The roles of islands distributed on eastern side of the strait, Kuroshio, submarine ridges, shoaling thennocline, and strait configuration played in the IW generation are examined using the cruise data analysis, satellite data interpretation, and dynamical analysis. The islands and channels on eastern side of the strait are excluded from a list of possible IW source sites owing to their unmatched horizontal dimensions to the scale of IW crest line length, and the relative low Reynolds number. The Kuroshio has a potential to be a radiator for the long-crest IW disturbances, meanwhile, the Kurosbio west (east) wing absorbs the eastward (westward) propagating IW disturbance. Namely, the Kuroshio blockades the outside west-east propagating IW disturbances. The 3-D configuration of the Luzon Strait is characterized by a sudden, more than one order widening of the cross-section areas at the outlets on both sides, providing a favorable condition for IW type initial disturbance formation. In the Luzon Strait, the thermocline is featured by a westward shoaling all the year around, providing the dynamical conditions for the amplitude growth (declination) to the westward (eastward) propagating IW type disturbance. Thus, the west slope of western submarine ridge at the western outlet of the Luzon Strait is a high possibility source sites for energetic, long-crest, transbasin IWs in the NSCS. The interpretation results of satellite SAR images during a 13 a period from 1995 to 2007 provide the convincing evidence for the conclusions.展开更多
Quantitative analysis and retrieval is given by the State Key Laboratory of Satellite Ocean Environment Dynamics(SOED),Second Institute of Oceanography(SIO),State Oceanic Administration(SOA),China,from the first...Quantitative analysis and retrieval is given by the State Key Laboratory of Satellite Ocean Environment Dynamics(SOED),Second Institute of Oceanography(SIO),State Oceanic Administration(SOA),China,from the first batch of GF-3 synthetic aperture radar(SAR)data with ocean internal wave features in the Yellow Sea.展开更多
This study aims to explore generation mechanisms of the ocean internal wave using the dynamical analysis methods based on linear theories. Historical cruise measurements and recent synthetic aperture radar (SAR) obs...This study aims to explore generation mechanisms of the ocean internal wave using the dynamical analysis methods based on linear theories. Historical cruise measurements and recent synthetic aperture radar (SAR) observations of mesoscale eddies with diameter of several tens of kilometers to hundreds of kilometers show that the internal wave packets with wavelength of hundreds of meters to kilometer exist inside the mesoscale eddies. This coexistence phenomenon and inherent links between the two different scale processes are revealed in the solutions of governing equations and boundary conditions for the internal wave disturbance with a horizontally slowly variable amplitude in a cylindrical coordinate system. The theoretical solutions indicate that the instability of eddy current field provides the dynamical mechanism to internal wave generation. The derived dispersion relation indicates that the internal wave propagation is modified by the eddy current field structure. The energy equation of the internal waves clearly shows the internal wave energy increment comes from the eddy. The theoretical models are used to explain the observation of the mesoscale eddy-induced internal waves off the Norwegian coast. The two-dimensional waveform solution of the anticyclonic eddy-induced internal wave packet appears as ring-shaped curves, which contains the typical features of eddy stream lines. The comparison of theoretical solutions to the structure of the internal wave packets on SAR image shows a good agreement on the major features.展开更多
Most studies of the synthetic aperture radar remote sensing of ocean internal waves are based on the solitary wave solutions of the Korteweg-de Vries (KdV) equation, and the dissipative term in the KdV equation is n...Most studies of the synthetic aperture radar remote sensing of ocean internal waves are based on the solitary wave solutions of the Korteweg-de Vries (KdV) equation, and the dissipative term in the KdV equation is not taken into account. However, the dissipative term is very important, both in the synthetic aperture radar images and in ocean models. In this paper, the traveling-wave structure to characterize the ocean internal wave phenomenon is modeled, the results of numerical experiments are advanced, and a theoretical hypothesis of the traveling wave to retrieve the ocean internal wave parameters in the synthetic aperture radar images is introduced.展开更多
To understand the characteristics of ocean internal waves better, we study the dispersion relation of extended-Korteweg-de Vries (EKdV) equation with quadratic and cubic nonlinear terms in a two-layer fluid by using t...To understand the characteristics of ocean internal waves better, we study the dispersion relation of extended-Korteweg-de Vries (EKdV) equation with quadratic and cubic nonlinear terms in a two-layer fluid by using the Poincaré-Lighthill-Kuo (PLK) method which is one of the perturbation methods. Starting from the partial differential equation, the PLK method can be used to solve the dispersion relation of the equation. In this paper, we use PLK method to solve the equation and derive the dispersion relation of EKdV equation which is related to wave number and amplitude. Based on the dispersion relation obtained in this paper, the expressions of group velocity and phase velocity of the equation are obtained. Under the actual hydrological data, the influence of hydrological parameters on the dispersion relation for descending internal wave is discussed. It is hope that the obtained results will be helpful to the study of energy transfer and other internal wave parameters in the future.展开更多
Internal soliton forces on oil-platform piles in the ocean are estimated with the Morison Formula. Different from sur- face wave forces, which change only in magnitude along a pile, internal soliton forces can be dist...Internal soliton forces on oil-platform piles in the ocean are estimated with the Morison Formula. Different from sur- face wave forces, which change only in magnitude along a pile, internal soliton forces can be distributed over the entire pile in the water and they change not only in magnitude but also in direction with depth. Our calculations show that the maximum total force caused by a soliton with its associated current of 2.1 m s-1 is nearly equal to the maximum total force exerted by a surface wave with a wavelength of 300 m and a wave-height of 18 m. The total internal soliton force is large enough to affect the operations of marine oil platforms and other facilities. Therefore, the influence of internal solitons should not be neglected in the design of oil platforms.展开更多
Based on the research of Lynett and Liu, a new horizontal fully two-dimensional internal wave propagation model with rotation effect was deduced, which can be used to simulate the characteristics of internal waves in ...Based on the research of Lynett and Liu, a new horizontal fully two-dimensional internal wave propagation model with rotation effect was deduced, which can be used to simulate the characteristics of internal waves in a horizontal fully two-dimensional plane. By combining the imaging mechanism of Synthetic Aperture Radar(SAR), a simulation procedure was fatherly acquired, which can simulate the propagation characteristics of oceanic internal waves into SAR images. In order to evaluate the validity of the proposed simulation procedure, case studies are performed in South China Sea and results from simulation procedure are analyzed in detail. A very good consistency was found between the simulation results and satellite images. The proposed simulation procedure will be a possible foundation for the quantitative interpretation of internal waves from fully two-dimensional satellite images.展开更多
Variational principles are constructed using the semi-inverse method for two kinds of extended Korteweg-de Vries (KdV) equations, which can be regarded as simple models of the nonlinear oceanic internal waves and at...Variational principles are constructed using the semi-inverse method for two kinds of extended Korteweg-de Vries (KdV) equations, which can be regarded as simple models of the nonlinear oceanic internal waves and atmospheric long waves, respectively. The obtained variational principles have also been proved to be correct.展开更多
The underwater acoustic field influenced by a selected ocean internal wavewas computed using the Parabolic Equation (PE) method and split-step difference algorithm in thispaper. Acoustic field is formed by sound sourc...The underwater acoustic field influenced by a selected ocean internal wavewas computed using the Parabolic Equation (PE) method and split-step difference algorithm in thispaper. Acoustic field is formed by sound source with different frequency covering the range ofradiation noise of ships and submarines. Owing to the adoption of complex variables, sparse matrix,Gaussian source and analysis on the grid size, numerical results are achieved smoothly. The resultsshow that internal wave''s influence on underwater sound can''t be neglected, especially for highersound frequency. So it'' s necessary to take internal wave into account in identifying radiationnoise of ships and submarines, namely for sound intensity, transmission loss and spectra shape.展开更多
基金The National Natural Science Foundation of China under contract No.51679132the Science and Technology Commission of Shanghai Municipality under contract Nos.21ZR1427000 and 17040501600.
文摘The development of oceanic remote sensing artificial intelligence has made possible to obtain valuable information from amounts of massive data.Oceanic internal waves play a crucial role in oceanic activity.To obtain oceanic internal wave stripes from synthetic aperture radar(SAR)images,a stripe segmentation algorithm is proposed based on the TransUNet framework,which is a combination of U-Net and Transformer,which is also optimized.Through adjusting the number of Transformer layer,multi-layer perceptron(MLP)channel,and Dropout parameters,the influence of over-fitting on accuracy is significantly weakened,which is more conducive to segmenting lightweight oceanic internal waves.The results show that the optimized algorithm can accurately segment oceanic internal wave stripes.Moreover,the optimized algorithm can be trained on a microcomputer,thus reducing the research threshold.The proposed algorithm can also change the complexity of the model to adapt it to different date scales.Therefore,TransUNet has immense potential for segmenting oceanic internal waves.
基金The ONR under contract Nos N00014-05-1-0328and N00014-05-1-0606the NASAJPLof USAunder contract No.NMO710968(for Zheng)the National Natural Science Foundations of China under contract No.40406009(for Hu)
文摘This effort aims to determine the generation source sites in the Luzon Strait for energetic, long-crest, transbasin internal waves (IW) observed in the northern South China Sea (NSCS). The roles of islands distributed on eastern side of the strait, Kuroshio, submarine ridges, shoaling thennocline, and strait configuration played in the IW generation are examined using the cruise data analysis, satellite data interpretation, and dynamical analysis. The islands and channels on eastern side of the strait are excluded from a list of possible IW source sites owing to their unmatched horizontal dimensions to the scale of IW crest line length, and the relative low Reynolds number. The Kuroshio has a potential to be a radiator for the long-crest IW disturbances, meanwhile, the Kurosbio west (east) wing absorbs the eastward (westward) propagating IW disturbance. Namely, the Kuroshio blockades the outside west-east propagating IW disturbances. The 3-D configuration of the Luzon Strait is characterized by a sudden, more than one order widening of the cross-section areas at the outlets on both sides, providing a favorable condition for IW type initial disturbance formation. In the Luzon Strait, the thermocline is featured by a westward shoaling all the year around, providing the dynamical conditions for the amplitude growth (declination) to the westward (eastward) propagating IW type disturbance. Thus, the west slope of western submarine ridge at the western outlet of the Luzon Strait is a high possibility source sites for energetic, long-crest, transbasin IWs in the NSCS. The interpretation results of satellite SAR images during a 13 a period from 1995 to 2007 provide the convincing evidence for the conclusions.
基金The National Key R&D Program of China under contract No.2016YFC1401007the National Natural Science Foundation of China under contract Nos 41406203 and 41621064the National High Resolution Project of China under contract No.41-Y20A14-9001-15/16
文摘Quantitative analysis and retrieval is given by the State Key Laboratory of Satellite Ocean Environment Dynamics(SOED),Second Institute of Oceanography(SIO),State Oceanic Administration(SOA),China,from the first batch of GF-3 synthetic aperture radar(SAR)data with ocean internal wave features in the Yellow Sea.
基金The RGC under contract No.461907the ONR under contract Nos N00014-05-1-0328and N00014-05-1-0606+1 种基金the SFMSBRP under contract No.973-2007CB411807the NASA JPL under contract No.NMO710968
文摘This study aims to explore generation mechanisms of the ocean internal wave using the dynamical analysis methods based on linear theories. Historical cruise measurements and recent synthetic aperture radar (SAR) observations of mesoscale eddies with diameter of several tens of kilometers to hundreds of kilometers show that the internal wave packets with wavelength of hundreds of meters to kilometer exist inside the mesoscale eddies. This coexistence phenomenon and inherent links between the two different scale processes are revealed in the solutions of governing equations and boundary conditions for the internal wave disturbance with a horizontally slowly variable amplitude in a cylindrical coordinate system. The theoretical solutions indicate that the instability of eddy current field provides the dynamical mechanism to internal wave generation. The derived dispersion relation indicates that the internal wave propagation is modified by the eddy current field structure. The energy equation of the internal waves clearly shows the internal wave energy increment comes from the eddy. The theoretical models are used to explain the observation of the mesoscale eddy-induced internal waves off the Norwegian coast. The two-dimensional waveform solution of the anticyclonic eddy-induced internal wave packet appears as ring-shaped curves, which contains the typical features of eddy stream lines. The comparison of theoretical solutions to the structure of the internal wave packets on SAR image shows a good agreement on the major features.
基金Project supported by the High Resolution Earth Observation Major Special Project of Youth Innovation Foundation of China(Grant No.GFZX04060103-3-12)the National Natural Science Foundation of China(Grant No.41175025)
文摘Most studies of the synthetic aperture radar remote sensing of ocean internal waves are based on the solitary wave solutions of the Korteweg-de Vries (KdV) equation, and the dissipative term in the KdV equation is not taken into account. However, the dissipative term is very important, both in the synthetic aperture radar images and in ocean models. In this paper, the traveling-wave structure to characterize the ocean internal wave phenomenon is modeled, the results of numerical experiments are advanced, and a theoretical hypothesis of the traveling wave to retrieve the ocean internal wave parameters in the synthetic aperture radar images is introduced.
文摘To understand the characteristics of ocean internal waves better, we study the dispersion relation of extended-Korteweg-de Vries (EKdV) equation with quadratic and cubic nonlinear terms in a two-layer fluid by using the Poincaré-Lighthill-Kuo (PLK) method which is one of the perturbation methods. Starting from the partial differential equation, the PLK method can be used to solve the dispersion relation of the equation. In this paper, we use PLK method to solve the equation and derive the dispersion relation of EKdV equation which is related to wave number and amplitude. Based on the dispersion relation obtained in this paper, the expressions of group velocity and phase velocity of the equation are obtained. Under the actual hydrological data, the influence of hydrological parameters on the dispersion relation for descending internal wave is discussed. It is hope that the obtained results will be helpful to the study of energy transfer and other internal wave parameters in the future.
基金This study is supported by the National Natural Science Foundation of China(Projects under contract Nos.40506007,49676275 and 49976002)the Natural Science Foundation of Shandong Province(No.Y2000E04)Microwave Imaging National Key Laboratory Foundation(No.51442020103JW1002).
文摘Internal soliton forces on oil-platform piles in the ocean are estimated with the Morison Formula. Different from sur- face wave forces, which change only in magnitude along a pile, internal soliton forces can be distributed over the entire pile in the water and they change not only in magnitude but also in direction with depth. Our calculations show that the maximum total force caused by a soliton with its associated current of 2.1 m s-1 is nearly equal to the maximum total force exerted by a surface wave with a wavelength of 300 m and a wave-height of 18 m. The total internal soliton force is large enough to affect the operations of marine oil platforms and other facilities. Therefore, the influence of internal solitons should not be neglected in the design of oil platforms.
基金Project supported by Chinese Academy of Sciences and China National Offshore Oil Corp
文摘Based on the research of Lynett and Liu, a new horizontal fully two-dimensional internal wave propagation model with rotation effect was deduced, which can be used to simulate the characteristics of internal waves in a horizontal fully two-dimensional plane. By combining the imaging mechanism of Synthetic Aperture Radar(SAR), a simulation procedure was fatherly acquired, which can simulate the propagation characteristics of oceanic internal waves into SAR images. In order to evaluate the validity of the proposed simulation procedure, case studies are performed in South China Sea and results from simulation procedure are analyzed in detail. A very good consistency was found between the simulation results and satellite images. The proposed simulation procedure will be a possible foundation for the quantitative interpretation of internal waves from fully two-dimensional satellite images.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61070041 and 40775064)
文摘Variational principles are constructed using the semi-inverse method for two kinds of extended Korteweg-de Vries (KdV) equations, which can be regarded as simple models of the nonlinear oceanic internal waves and atmospheric long waves, respectively. The obtained variational principles have also been proved to be correct.
文摘The underwater acoustic field influenced by a selected ocean internal wavewas computed using the Parabolic Equation (PE) method and split-step difference algorithm in thispaper. Acoustic field is formed by sound source with different frequency covering the range ofradiation noise of ships and submarines. Owing to the adoption of complex variables, sparse matrix,Gaussian source and analysis on the grid size, numerical results are achieved smoothly. The resultsshow that internal wave''s influence on underwater sound can''t be neglected, especially for highersound frequency. So it'' s necessary to take internal wave into account in identifying radiationnoise of ships and submarines, namely for sound intensity, transmission loss and spectra shape.