We isolated and identified a bacterium that could produce IAA and degrade phloridzin in the rhizosphere soil of healthy replanted apple(the rootstock is M9T337 and the scion is Yanfu 3),providing a theoretical basis f...We isolated and identified a bacterium that could produce IAA and degrade phloridzin in the rhizosphere soil of healthy replanted apple(the rootstock is M9T337 and the scion is Yanfu 3),providing a theoretical basis for reducing the obstacles associated with apple replant disease(ARD).Isolates were screened using Salkowski colorimetry and screening medium for phloridzin.The isolate of interest(W6)was identified as Ochrobactrum haematophilum based on morphological analysis,physiological and biochemical tests,and 16S rDNA sequencing.In a laboratory experiment,W6 produced auxin and promoted the growth of Arabidopsis thaliana roots,and its degradation rate of 100 mg.L^(-1 )phloridzin was 62.0%.In a pot experiment,W6 significantly reduced the phenolic acid contents of replanted soil,lowered the abundance of the harmful fungus Fusarium solani,and increased soil enzyme activities,thereby improving the micro-ecological environment of replant soil.W6 increased the root antioxidant enzyme activity and leaf photosynthetic pigment content of replanted Malus hupehensis Rehd.seedlings,effectively alleviating the decrease in net photosynthetic rate,transpiration rate and stomatal conductance caused by ARD.In a field experiment,W6 also promoted the growth of replanted apple(the rootstock is M9T337 and the scion is Yanfu 3)saplings.Therefore,W6 can promote apple growth and degrade phenolic acids,and it can be used as an effective treatment for the reduction of ARD.展开更多
A bacterial strain BAP5 with a relatively high degradation ability of benzo[a]pyrene (BaP) was isolated from marine sediments of Xiamen Western Sea, China and identified as Ochrobactrum sp. according to 16S rRNA gen...A bacterial strain BAP5 with a relatively high degradation ability of benzo[a]pyrene (BaP) was isolated from marine sediments of Xiamen Western Sea, China and identified as Ochrobactrum sp. according to 16S rRNA gene sequence as well as Biolog microbial identification system. Strain BAP5 could grow in mineral salt medium with 50 mg/L of BaP and degrade about 20% BaP after 30 d of incubation. Ochrobactrum sp. BAP5 was able to utilize other polycyclic aromatic hydrocarbons (PAHs) (such as phenanthrene, pyrene and fluoranthene) as the sole carbon source and energy source, suggesting its potential application in PAHs bioremediation. The profile of total soluble protein from Ochrobactrum sp. BAP5 was also investigated. Some over- and special-expressed proteins of strain BAP5 when incubated with the presence of BaP were detected by two-dimensional polyacrylamide gel electrophoresis, and found to be related with PAHs metabolism, DNA translation, and energy production based on peptide fingerprint analysis through matrix-assisted laser desorption/ionization-time of flight mass spectrometry.展开更多
Petroleum refinery wastewater (PRW) containing hydrocarbon is highly toxic to the environment and the surrounding ecosystem. Proper treatment of the PRW effluent is necessary to remove the pollutants before discharg...Petroleum refinery wastewater (PRW) containing hydrocarbon is highly toxic to the environment and the surrounding ecosystem. Proper treatment of the PRW effluent is necessary to remove the pollutants before discharge. Bioremediation is considered to be a promising approach as it is eco- friendly and efficient. The exopolysaccharide (EPS) produced by the O. anthropi acts as a bioemulsifier and showed the highest emulsification activity of 60% on diesel. An EPS yield of about 0.42 g/L was obtained under optimized conditions. The carbohydrate and protein content of the EPS was found to be 71.1% and 19.7% respectively, showing the glycoprotein nature. The structural properties of EPS were analyzed by FT-IR and 1H NMR. The batch degradation of oil in PRW by O. anthropi was studied gravimetrically, and showed about 53% degradation in 7 days, indicating the strong ability of the isolated strain to degrade the hydrocarbons in PRW.展开更多
A 1602 bp fragment was cloned from a soil bacterium Ochrobactrum sp. 531. It contained an open reading frame (ORF) of 1092 bp which was identified as a multicopper oxidase (MCO) with potential laccase activity. After ...A 1602 bp fragment was cloned from a soil bacterium Ochrobactrum sp. 531. It contained an open reading frame (ORF) of 1092 bp which was identified as a multicopper oxidase (MCO) with potential laccase activity. After inserting the cloned gene into the expression vector pET23a, it was expressed in E. coli BL21(DE3)pLysS, and its product was purified to homogeneity through chromatography. The Ochrobactrum sp. 531 MCO, consisting of 533 amino acids with a molecular mass of 57.8 kDa, was quite stable in neutral pH and showed laccase-like activity oxidizing 2,6-dimethoxyphenol (DMP), 2,2’-azino-bis(3-ethylbe- nzthiazolinesulfonic acid) (ABTS), and syringaldazine (SGZ). The enzyme showed optimum activity towards DMP, ABTS, and SGZ at the pH 8.0, 3.6, and 7.5 respectively. Kinetic studies gave this enzyme Km, kcat and kcat//Km values of: 0.09 mM, 7.94 s–1, and 88.22 s–1?mM–1 for DMP;0.072 mM, 2.95 s–1, and 40.97 s–1.mM–1 for ABTS;and 0.015 mM, 2.4 s–1, and 160 s–1.mM–1 for SGZ. Our results demonstrate that Ochrobactrum sp. 531 MCO is a bacterial laccase which oxidized phenolic substrates DMP and SGZ effectively under alkaline conditions. These unusual properties make the enzyme an interesting biocatalyst in applications for which classical laccases are unsuitable.展开更多
One Gram-negative Bacillus was isolated from a brain sample of a pig with neurological symptoms.Pathological examination showed meningitis at necropsy. Ochrobactrum anthropi (O. anthropi) was successfully isolated fro...One Gram-negative Bacillus was isolated from a brain sample of a pig with neurological symptoms.Pathological examination showed meningitis at necropsy. Ochrobactrum anthropi (O. anthropi) was successfully isolated from the brain sample and was confirmed by biochemical reaction results (API 20 NE) and gene sequencing. The strain was highly resistant to b-lactam antibiotics. Mice were experimentally infected with O. anthropi and showed typical meningitis. This is the first report on O. anthropi isolated from a pig, and indicates that O. anthropi may have a broader host spectrum of infection.展开更多
A Gram-negative, chromium(Ⅵ) tolerant and reductive strain CTS-325, isolated from a Chinese chromate plant, was identified as Ochrobactrum anthropi based on its biochemical properties and 16S rDNA sequence analysis...A Gram-negative, chromium(Ⅵ) tolerant and reductive strain CTS-325, isolated from a Chinese chromate plant, was identified as Ochrobactrum anthropi based on its biochemical properties and 16S rDNA sequence analysis. It was able to tolerate up to 10 mmol/L Cr(Ⅵ) and completely reduce 1 mmol/L Cr(Ⅵ) to Cr(Ⅲ) within 48 h. When the strain CTS-325 was induced with Cr(Ⅵ), a protein increased significantly in the whole cell proteins. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis revealed that this protein was a superoxide dismutase (SOD) homology. The measured superoxide dismutase activity was 2694 U/mg after three steps of purification. The SOD catalyzes the dismutation of the superoxide anion (O2^←) into hydrogen peroxide and molecular oxygen. This protein is considered to be one of the most important anti-oxidative enzymes for O. anthropi as it allows the bacterium to survive high oxygen stress environments, such as the environment produced during the reduction process of Cr(Ⅵ).展开更多
Ochrobactrum anthropi CTS-325 isolated from a chromium-contaminated site had better resistance to Cr(Ⅵ) in LB medium under aerobic condition.Meanwhile,it was found that the reduction of Cr(Ⅵ) is not complete dur...Ochrobactrum anthropi CTS-325 isolated from a chromium-contaminated site had better resistance to Cr(Ⅵ) in LB medium under aerobic condition.Meanwhile,it was found that the reduction of Cr(Ⅵ) is not complete during the experimental process.Therefore,a series of small molecule energy sources including nitrogen and carbon sources were added into the LB medium in the bacterial stationary phase to promote the chromium reducibility.The result showed that the bacterial growth was positively correlated with the chromium reduction.SDS-PAGE analysis indicated that the protein groups were changed when the bacteria were stimulated by the chromium.Additionally,it was revealed that O.anthropi CTS-325 could utilize the cheaper alternative of sugar(sucrose residue leaching solution) well for further growth and restart the chromium reduction,which offered a new method for practical appli-cations.展开更多
An alginate-degrading bacterium, identified as Ochrobactrum sp. on the basis of 16S rDNA gene sequencing, was isolated from brown algal samples collected from the waters in close vicinity to the Dongtou isles of the E...An alginate-degrading bacterium, identified as Ochrobactrum sp. on the basis of 16S rDNA gene sequencing, was isolated from brown algal samples collected from the waters in close vicinity to the Dongtou isles of the East China Sea. The strain, designated WZUH09-1, is able to depolymerize alginates with higher enzyme activity than that of others reported so far.展开更多
The present study deals with colonization potential of plant growth promoting bacterial strains (Ochrobactrum intermedium, Bacillus cereus and Brevibacterium sp.) on Vigna radiata roots. The roots were heavily coloniz...The present study deals with colonization potential of plant growth promoting bacterial strains (Ochrobactrum intermedium, Bacillus cereus and Brevibacterium sp.) on Vigna radiata roots. The roots were heavily colonized with O. intermedium and B. cereus as compared to Brevibacterium sp. O. intermedium mainly colonized rhizoplane while B. cereus occurred both on the rhizoplane and near root zone. O. intermedium and B. cereus were found to be present both on the rhizoplane and near root zone, while Brevibacterium only in the rhizosphere in the form of groups. The cells of B. cereus were found more in the sites where root exudates were existed. From the above results it was observed that the number of O. intermedium cells were large at root exudate site. Fig 2, Tab 1, Ref展开更多
麦草畏是理想的抗除草剂转基因工程的靶标除草剂;发掘新的麦草畏高效降解菌株和基因具有非常重要的理论和应用价值.从南京土壤样品中分离到一株麦草畏高效降解菌株,命名为3-3.根据生理生化特征和16S r DNA序列相似性分析,将其初步鉴定...麦草畏是理想的抗除草剂转基因工程的靶标除草剂;发掘新的麦草畏高效降解菌株和基因具有非常重要的理论和应用价值.从南京土壤样品中分离到一株麦草畏高效降解菌株,命名为3-3.根据生理生化特征和16S r DNA序列相似性分析,将其初步鉴定为苍白杆菌属(Ochrobactrum sp.).菌株3-3在48 h内完全降解100 mg/L的麦草畏.该菌株降解麦草畏的最适温度为30℃,最适p H为7.0.代谢产物高效液相和质谱鉴定结果表明该菌株降解麦草畏的起始步骤是脱甲基,形成没有除草活性的3,6-二氯水杨酸(DCSA).菌株粗酶液只在NADH存在时才有麦草畏脱甲基酶活性.PCR扩增和该菌基因组生物信息学分析表明该菌株没有已报道的麦草畏脱甲基酶基因DMO、Mtv及Dmt或其同源序列.总之,本研究首次分离筛选到苍白杆菌属的麦草畏降解菌,且该菌可能存在一个新的氧化酶类麦草畏脱甲基酶基因.展开更多
In this study, we isolated an environmental clone of Ochrobactrum intermedium, strain 2745-2, from the formation water of Changqing oilfield in Shanxi, China, which can degrade crude oil. Strain 2745-2 is aerobic and ...In this study, we isolated an environmental clone of Ochrobactrum intermedium, strain 2745-2, from the formation water of Changqing oilfield in Shanxi, China, which can degrade crude oil. Strain 2745-2 is aerobic and rod-shaped with optimum growth at 42 ℃ and pH 5.5. We sequenced the genome and found a single chromosome of 4800175 bp, with a G+C content of 57.63%. Sixty RNAs and 4737 protein-coding genes were identified: many of the genes are responsible for the degradation, emulsification, and metabolizing of crude oil. A comparative genomic analysis with related clinical strains (M86, 229E, and LMG3301T) showed that genes involved in virulence, disease, defense, phages, prophages, transposable elements, plasmids, and antibiotic resistance are also present in strain 2745-2.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.31672104)the earmarked fund for China Agriculture Research System(Grant No.CARS-27)+4 种基金Shandong Agricultural Major Applied Technology Innovation Project(Grant No.SD2019ZZ008)Taishan Scholar Funded Project(Grant No.20190923)Qingchuang Science and Technology Support Project of Shandong Colleges and Universities(Grant No.2019KJF020)Natural Science Foundation of Shandong Province(Grant No.ZR2020MC131)the National Key Research and Development Program of China(Grant No.2020YFD1000201).
文摘We isolated and identified a bacterium that could produce IAA and degrade phloridzin in the rhizosphere soil of healthy replanted apple(the rootstock is M9T337 and the scion is Yanfu 3),providing a theoretical basis for reducing the obstacles associated with apple replant disease(ARD).Isolates were screened using Salkowski colorimetry and screening medium for phloridzin.The isolate of interest(W6)was identified as Ochrobactrum haematophilum based on morphological analysis,physiological and biochemical tests,and 16S rDNA sequencing.In a laboratory experiment,W6 produced auxin and promoted the growth of Arabidopsis thaliana roots,and its degradation rate of 100 mg.L^(-1 )phloridzin was 62.0%.In a pot experiment,W6 significantly reduced the phenolic acid contents of replanted soil,lowered the abundance of the harmful fungus Fusarium solani,and increased soil enzyme activities,thereby improving the micro-ecological environment of replant soil.W6 increased the root antioxidant enzyme activity and leaf photosynthetic pigment content of replanted Malus hupehensis Rehd.seedlings,effectively alleviating the decrease in net photosynthetic rate,transpiration rate and stomatal conductance caused by ARD.In a field experiment,W6 also promoted the growth of replanted apple(the rootstock is M9T337 and the scion is Yanfu 3)saplings.Therefore,W6 can promote apple growth and degrade phenolic acids,and it can be used as an effective treatment for the reduction of ARD.
基金supported by the National Natural Sci-ence Foundation of China (No 40206015, 30970106)the Fork Ying Tong Education Foundation (No 94002) the Science and Technology Project of Guangdong Province,China (No 2006A36502001, 2007A032600003)
文摘A bacterial strain BAP5 with a relatively high degradation ability of benzo[a]pyrene (BaP) was isolated from marine sediments of Xiamen Western Sea, China and identified as Ochrobactrum sp. according to 16S rRNA gene sequence as well as Biolog microbial identification system. Strain BAP5 could grow in mineral salt medium with 50 mg/L of BaP and degrade about 20% BaP after 30 d of incubation. Ochrobactrum sp. BAP5 was able to utilize other polycyclic aromatic hydrocarbons (PAHs) (such as phenanthrene, pyrene and fluoranthene) as the sole carbon source and energy source, suggesting its potential application in PAHs bioremediation. The profile of total soluble protein from Ochrobactrum sp. BAP5 was also investigated. Some over- and special-expressed proteins of strain BAP5 when incubated with the presence of BaP were detected by two-dimensional polyacrylamide gel electrophoresis, and found to be related with PAHs metabolism, DNA translation, and energy production based on peptide fingerprint analysis through matrix-assisted laser desorption/ionization-time of flight mass spectrometry.
基金the Department of Science and Technology, India for financial support under fast track scheme for young scientist (SR/FT/LS-19/2012)
文摘Petroleum refinery wastewater (PRW) containing hydrocarbon is highly toxic to the environment and the surrounding ecosystem. Proper treatment of the PRW effluent is necessary to remove the pollutants before discharge. Bioremediation is considered to be a promising approach as it is eco- friendly and efficient. The exopolysaccharide (EPS) produced by the O. anthropi acts as a bioemulsifier and showed the highest emulsification activity of 60% on diesel. An EPS yield of about 0.42 g/L was obtained under optimized conditions. The carbohydrate and protein content of the EPS was found to be 71.1% and 19.7% respectively, showing the glycoprotein nature. The structural properties of EPS were analyzed by FT-IR and 1H NMR. The batch degradation of oil in PRW by O. anthropi was studied gravimetrically, and showed about 53% degradation in 7 days, indicating the strong ability of the isolated strain to degrade the hydrocarbons in PRW.
文摘A 1602 bp fragment was cloned from a soil bacterium Ochrobactrum sp. 531. It contained an open reading frame (ORF) of 1092 bp which was identified as a multicopper oxidase (MCO) with potential laccase activity. After inserting the cloned gene into the expression vector pET23a, it was expressed in E. coli BL21(DE3)pLysS, and its product was purified to homogeneity through chromatography. The Ochrobactrum sp. 531 MCO, consisting of 533 amino acids with a molecular mass of 57.8 kDa, was quite stable in neutral pH and showed laccase-like activity oxidizing 2,6-dimethoxyphenol (DMP), 2,2’-azino-bis(3-ethylbe- nzthiazolinesulfonic acid) (ABTS), and syringaldazine (SGZ). The enzyme showed optimum activity towards DMP, ABTS, and SGZ at the pH 8.0, 3.6, and 7.5 respectively. Kinetic studies gave this enzyme Km, kcat and kcat//Km values of: 0.09 mM, 7.94 s–1, and 88.22 s–1?mM–1 for DMP;0.072 mM, 2.95 s–1, and 40.97 s–1.mM–1 for ABTS;and 0.015 mM, 2.4 s–1, and 160 s–1.mM–1 for SGZ. Our results demonstrate that Ochrobactrum sp. 531 MCO is a bacterial laccase which oxidized phenolic substrates DMP and SGZ effectively under alkaline conditions. These unusual properties make the enzyme an interesting biocatalyst in applications for which classical laccases are unsuitable.
文摘One Gram-negative Bacillus was isolated from a brain sample of a pig with neurological symptoms.Pathological examination showed meningitis at necropsy. Ochrobactrum anthropi (O. anthropi) was successfully isolated from the brain sample and was confirmed by biochemical reaction results (API 20 NE) and gene sequencing. The strain was highly resistant to b-lactam antibiotics. Mice were experimentally infected with O. anthropi and showed typical meningitis. This is the first report on O. anthropi isolated from a pig, and indicates that O. anthropi may have a broader host spectrum of infection.
基金supported by the National Basic Research Program (973) of China (No. 2007CB815601)the National Natural Science Foundation of China (No.40902097, 40772034, 10776027)+1 种基金the Special Foundation of the President of the Chinese Academy of Sciencesthe Opening Project of Key Laboratory of Solid Waste Treatment and Resource Recycle (No. 09ZXGK05),Ministry of Education
文摘A Gram-negative, chromium(Ⅵ) tolerant and reductive strain CTS-325, isolated from a Chinese chromate plant, was identified as Ochrobactrum anthropi based on its biochemical properties and 16S rDNA sequence analysis. It was able to tolerate up to 10 mmol/L Cr(Ⅵ) and completely reduce 1 mmol/L Cr(Ⅵ) to Cr(Ⅲ) within 48 h. When the strain CTS-325 was induced with Cr(Ⅵ), a protein increased significantly in the whole cell proteins. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis revealed that this protein was a superoxide dismutase (SOD) homology. The measured superoxide dismutase activity was 2694 U/mg after three steps of purification. The SOD catalyzes the dismutation of the superoxide anion (O2^←) into hydrogen peroxide and molecular oxygen. This protein is considered to be one of the most important anti-oxidative enzymes for O. anthropi as it allows the bacterium to survive high oxygen stress environments, such as the environment produced during the reduction process of Cr(Ⅵ).
基金Supported by the National Basic Research Program of China (973 program,No. 2007CB815601,2010CB933501)the National Natural Science Foundation of China (40772034, 40902097)+2 种基金 the Outstanding Youth Fund (50625205) the Opening Project of Key Laboratory of Solid Waste Treatment and Resource Recycle (No. 09zxgk05),Ministry of Educationthe CAS Foundation (KJCX1.YW.07)
文摘Ochrobactrum anthropi CTS-325 isolated from a chromium-contaminated site had better resistance to Cr(Ⅵ) in LB medium under aerobic condition.Meanwhile,it was found that the reduction of Cr(Ⅵ) is not complete during the experimental process.Therefore,a series of small molecule energy sources including nitrogen and carbon sources were added into the LB medium in the bacterial stationary phase to promote the chromium reducibility.The result showed that the bacterial growth was positively correlated with the chromium reduction.SDS-PAGE analysis indicated that the protein groups were changed when the bacteria were stimulated by the chromium.Additionally,it was revealed that O.anthropi CTS-325 could utilize the cheaper alternative of sugar(sucrose residue leaching solution) well for further growth and restart the chromium reduction,which offered a new method for practical appli-cations.
文摘An alginate-degrading bacterium, identified as Ochrobactrum sp. on the basis of 16S rDNA gene sequencing, was isolated from brown algal samples collected from the waters in close vicinity to the Dongtou isles of the East China Sea. The strain, designated WZUH09-1, is able to depolymerize alginates with higher enzyme activity than that of others reported so far.
文摘The present study deals with colonization potential of plant growth promoting bacterial strains (Ochrobactrum intermedium, Bacillus cereus and Brevibacterium sp.) on Vigna radiata roots. The roots were heavily colonized with O. intermedium and B. cereus as compared to Brevibacterium sp. O. intermedium mainly colonized rhizoplane while B. cereus occurred both on the rhizoplane and near root zone. O. intermedium and B. cereus were found to be present both on the rhizoplane and near root zone, while Brevibacterium only in the rhizosphere in the form of groups. The cells of B. cereus were found more in the sites where root exudates were existed. From the above results it was observed that the number of O. intermedium cells were large at root exudate site. Fig 2, Tab 1, Ref
基金supported by the National High-Tech R&D Program(863)of China(No.2013AA064402)the National Natural Science Foundation of China(Nos.81301461 and 51474034)+1 种基金the Zhejiang Provincial Natural Science Foundation of China(No.LQ13H190002)the Scientific Research Foundation of Zhejiang Provincial Health Bureau(No.2012KYB083),China
文摘In this study, we isolated an environmental clone of Ochrobactrum intermedium, strain 2745-2, from the formation water of Changqing oilfield in Shanxi, China, which can degrade crude oil. Strain 2745-2 is aerobic and rod-shaped with optimum growth at 42 ℃ and pH 5.5. We sequenced the genome and found a single chromosome of 4800175 bp, with a G+C content of 57.63%. Sixty RNAs and 4737 protein-coding genes were identified: many of the genes are responsible for the degradation, emulsification, and metabolizing of crude oil. A comparative genomic analysis with related clinical strains (M86, 229E, and LMG3301T) showed that genes involved in virulence, disease, defense, phages, prophages, transposable elements, plasmids, and antibiotic resistance are also present in strain 2745-2.