Poly(divinylbenzene) (PDVB) microcapsules containing octadecane (OD) (PDVB/OD) used as heat storage material were synthesized by suspension polymerization at 70 Microencapsulation, Microcapsule, Heat Storage Material,...Poly(divinylbenzene) (PDVB) microcapsules containing octadecane (OD) (PDVB/OD) used as heat storage material were synthesized by suspension polymerization at 70 Microencapsulation, Microcapsule, Heat Storage Material, Octadecane, Suspension Polymerization, Poly(Divinylbenzene)C using benzoyl peroxide and polyvinyl alcohol as initiator and stabilizer, respectively. Thermal properties and stability of PDVB/OD microcapsules were determined using differential scanning calorimeter (DSC) and thermogravimetric analyzer. The morphology and structure of microcapsules were characterized by optical microscope, scanning electron microscope and fourier transform infrared spectrophotometer. From DSC analysis, the melting temperature of encapsulated OD (28oC) was almost the same as that of bulk OD (30oC) while it was quite different in the case of the solidification temperature (19oC and 25oC for encapsulated and bulk OD, respectively). The latent heats of melting (184.0 J/g-OD) and solidification (183.2 J/g-OD) of encapsulated OD were reduced from those of bulk OD (241.7 and 247.0 J/g, respectively). However, the prepared PDVB/OD microcapsules are able to be used for heat storage applications.展开更多
文摘Poly(divinylbenzene) (PDVB) microcapsules containing octadecane (OD) (PDVB/OD) used as heat storage material were synthesized by suspension polymerization at 70 Microencapsulation, Microcapsule, Heat Storage Material, Octadecane, Suspension Polymerization, Poly(Divinylbenzene)C using benzoyl peroxide and polyvinyl alcohol as initiator and stabilizer, respectively. Thermal properties and stability of PDVB/OD microcapsules were determined using differential scanning calorimeter (DSC) and thermogravimetric analyzer. The morphology and structure of microcapsules were characterized by optical microscope, scanning electron microscope and fourier transform infrared spectrophotometer. From DSC analysis, the melting temperature of encapsulated OD (28oC) was almost the same as that of bulk OD (30oC) while it was quite different in the case of the solidification temperature (19oC and 25oC for encapsulated and bulk OD, respectively). The latent heats of melting (184.0 J/g-OD) and solidification (183.2 J/g-OD) of encapsulated OD were reduced from those of bulk OD (241.7 and 247.0 J/g, respectively). However, the prepared PDVB/OD microcapsules are able to be used for heat storage applications.