The dynamical moment of inertia is estimated with its even-power expansion of the rotational frequency and in accordance we determine the intermediate spins of the superdeformed(SD)rotational bands.Using Marquardt met...The dynamical moment of inertia is estimated with its even-power expansion of the rotational frequency and in accordance we determine the intermediate spins of the superdeformed(SD)rotational bands.Using Marquardt method of nonlinear least-squares routines,we determine the expansion coefficients by fitting the proposed dynamical moment of inertia with its recent experimental data of the SD nuclei in the A=190 mass region.The comparison between our theoretical and available experimental data for the dynamic moment of inertia and spin shows good agreements. Also,we have calculated the static moment of inertia at three alternative values of spin.The value of spin at which the two moments of inertia are nearly equals is to be regarded as a bandhead spin of the corresponding band.These studies are carried out for eighteen bands of odd-A nuclei of the superdeformed region 190,namely ~(189)Hg(b1),~(191)Hg(b1,b2, b3,b4),~(193)Hg(b2,b3,b5),~(195)Hg(b1,b2,b3,b4),~(193)Tl(b1,b2,b3,b5),~(189)Tl(b1),and~(197)Bi(b1).We also notice the occurrence of identical SD bands with near identical transition energies among the considered SD bands.展开更多
Research on the pairing phase transition in the odd-A nucleus ^(161)Dy is based on a sophisticated blend of the covariant density functional theory and the shell-model-like approach.It has been observed that variation...Research on the pairing phase transition in the odd-A nucleus ^(161)Dy is based on a sophisticated blend of the covariant density functional theory and the shell-model-like approach.It has been observed that variations in thermodynamic quantities at the critical temperature do not exclusively align with pairing phase transitions.The presence of an S-shaped heat capacity curve,often interpreted as an indicator of such transitions,does not offer a definitive confirmation.Additional factors,including the blocking effect,can modify the heat capacity curve and impede the transition process.The pairing phase transition in ^(161)Dy,which occurs approximately from 0.7 to 1.0 MeV,is unequivocally characterized as a first-order transition.Furthermore,the analysis of the impact of varying strengths of pairing correlations on these transitions reveals a nonlinear relationship,thereby adding complexity to the transition dynamics.展开更多
The Bayesian neural network approach has been employed to improve the nuclear magnetic moment predictions of odd-A nuclei.The Schmidt magnetic moment obtained from the extreme single-particle shell model makes large r...The Bayesian neural network approach has been employed to improve the nuclear magnetic moment predictions of odd-A nuclei.The Schmidt magnetic moment obtained from the extreme single-particle shell model makes large root-mean-square(rms)deviations from data,i.e.,0.949μN and 1.272μN for odd-neutron nuclei and odd-proton nuclei,respectively.By including the dependence of the nuclear spin and Schmidt magnetic moment,the machine-learning approach precisely describes the magnetic moments of odd-A uclei with rms deviations of 0.036μN for odd-neutron nuclei and 0.061μN for odd-proton nuclei.Furthermore,the evolution of magnetic moments along isotopic chains,including the staggering and sudden jump trend,which are difficult to describe using nuclear models,have been well reproduced by the Bayesian neural network(BNN)approach.The magnetic moments of doubly closed-shell±1 nuclei,for example,isoscalar and isovector magnetic moments,have been well studied and compared with the corresponding non-relativistic and relativistic calculations.展开更多
By using a simple barrier penetration approach,we predict the α-decay branching ratios to members of ground-state rotational band of heavy even-even No isotopes. We also extend our approach to calculate the α-decay ...By using a simple barrier penetration approach,we predict the α-decay branching ratios to members of ground-state rotational band of heavy even-even No isotopes. We also extend our approach to calculate the α-decay branching ratios to the rotational band of heavy odd-A nuclei. The theoretical branching ratios of α-decays are found in good agreement with the available experimental data.展开更多
The coordinate-space Hartree-Fock-Bogoliubov(HFB) approach with quasiparticle blocking has been applied to study the odd-A weakly bound nuclei ^17,19B and ^37Mg,in which halo structures have been reported in experim...The coordinate-space Hartree-Fock-Bogoliubov(HFB) approach with quasiparticle blocking has been applied to study the odd-A weakly bound nuclei ^17,19B and ^37Mg,in which halo structures have been reported in experiments.The Skyrme nuclear forces SLy4 and UNEDF1 have been adopted in our calculations.The results with and without blocking have been compared to demonstrate the emergence of deformed halo structures due to blocking effects.In our calculations,^19B and ^37Mg have remarkable features of deformed halos.展开更多
In this study,we revisit the previous mass relations of mirror nuclei by considering 1/N-and 1/Z-dependent terms and the shell effect across a shell.The root-mean-squared deviation is 66 keV for 116 nuclei with neutro...In this study,we revisit the previous mass relations of mirror nuclei by considering 1/N-and 1/Z-dependent terms and the shell effect across a shell.The root-mean-squared deviation is 66 keV for 116 nuclei with neutron number N≥10,as com-pared with experimental data compiled in the AME2020 database.The predicted mass excesses of 173 proton-rich nuclei,including 98 unknown nuclei,are tabulated in the Supplemental Material herein with competitive accuracy.展开更多
The exploration of spin symmetry (SS) in nuclear physics has been instrumental in identifying atomic nucleus structures.In this study,we solve the Dirac equation from the relativistic mean field (RMF) in complex momen...The exploration of spin symmetry (SS) in nuclear physics has been instrumental in identifying atomic nucleus structures.In this study,we solve the Dirac equation from the relativistic mean field (RMF) in complex momentum representation.We investigated SS and its breaking in single-particle resonant states within deformed nuclei,with a focus on the illustrative nucleus168Er.This was the initial discovery of a resonant spin doublet in a deformed nucleus,with the expectation of the SS approaching the continuum threshold.With increasing single-particle energy,the splitting of the resonant spin doublets widened significantly.This escalating splitting implies diminishing adherence to the SS,indicating a departure from the expected behavior as the energy levels increase.We also analyzed the width of the resonant states,showing that lower orbital angular momentum resonances possess shorter decay times and that SS is preserved within broad resonant doublets,as opposed to narrow resonant doublets.Comparing the radial density of the upper components for the bound-state and resonant-state doublets,it becomes evident that while SS is well-preserved in the bound states,it deteriorates in the resonant states.The impact of nuclear deformation (β_(2)) on SS was examined,demonstrating that an increase in β_(2) resulted in higher energy and width splitting in the resonant spin doublets,which is attributed to increased component mixing.Furthermore,the sensitivity of spin doublets to various potential parameters such as surface diffuseness (a),radius (R),and depth (Σ0) is discussed,emphasizing the role of these parameters in SS.This study provides valuable insights into the behavior of spin doublets in deformed nuclei and their interplay with the nuclear structure,thereby advancing our understanding of SS in the resonance state.展开更多
In the current study,we examined every possible cluster-daughter combination in the heavy-particle decay of isotopes ^(297-300)119 and computed the decay half-lives using the modified generalized liquid drop model(MGL...In the current study,we examined every possible cluster-daughter combination in the heavy-particle decay of isotopes ^(297-300)119 and computed the decay half-lives using the modified generalized liquid drop model(MGLDM)with the preformation factor depending on the disintegration energy.The predicted half-life of every heavy cluster(Z_(C)≥32)was within the experimentally observable limits.These results aligned with the predictions of Poenaru et al.[Phys.Rev.Lett.107,062503(2011)]that superheavy nuclei(SHN)with Z>110 will release heavy particles with a penetrability comparable to or greater than theα-decay.The half-lives predicted using the MGLDM for clusters^(89)Rb,^(91)Rb,and^(92)Rb from parents^(297)119,^(299)119,and^(300)119,respectively,agreed with the predictions of Poenaru et al.[Eur.Phys.J.A 54,14(2018)].It was found that the isotopes of heavy clusters Kr,Rb,Sr,Pa,In,and Cd had half-lives comparable to theαhalf-life;and isotopes of clusters I,Xe,and Cs had the minimum half-life(10^(-14)s).These observations revealed the role of the shell closure(Z=82,N=82,and N=126)of the cluster and daughter nuclei in heavy-cluster radioactivity.We predicted that isotope ^(297,299)119 decayed by 4αdecay chains and isotope^(300)119 decayed by 6αdecay chains,while^(298)119 decayed by continuousαdecay chains.The predicted half-lives and modes of decay of the nuclei in the decay chains of^(297-300)119 agreed with the experimental data,proving the reliability of our calculations.The present study determined the most favorable heavy-cluster emissions from these nuclei and provided suitable projectile-target combinations for their synthesis.展开更多
A recently released XMM-Newton note revealed a significant calibration issue between nuclear spectroscopic telescope array(NuSTAR)and XMM-Newton European Photon Imaging Camera(EPIC)and provided an empirical correction...A recently released XMM-Newton note revealed a significant calibration issue between nuclear spectroscopic telescope array(NuSTAR)and XMM-Newton European Photon Imaging Camera(EPIC)and provided an empirical correction to the EPIC effective area.To quantify the bias caused by the calibration issue in the joint analysis of XMM-NuSTAR spectra and verify the effectiveness of the correction,in this work,we perform joint-fitting of the NuSTAR and EPIC-pn spectra for a large sample of 104 observation pairs of 44 X-ray bright active galactic nuclei(AGN).The spectra were extracted after requiring perfect simultaneity between the XMM-Newton and NuSTAR exposures(merging good time intervals(GTIs)from two missions)to avoid bias due to the rapid spectral variability of the AGN.Before the correction,the EPIC-pn spectra are systematically harder than the corresponding NuSTAR spectra by■subsequently yielding significantly underestimated cutoff energy E_(cut)and the strength of reflection component R when performing joint-fitting.We confirm that the correction is highly effective and can commendably erase the discrepancy in best-fitΓ,E_(cut),and R.We thus urge the community to apply the correction when joint-fitting XMM-NuSTAR spectra,but note that the correction is limited to 3–12 keV and therefore not applicable when the soft X-ray band data are included.Besides,we show that as merging GTIs from two missions would cause severe loss of NuSTAR net exposure time,in many cases,joint-fitting yields no advantage compared with utilizing NuSTAR data alone.Finally,We present a technical note on filtering periods of high background flares for XMM-Newton EPIC-pn exposures in the small window(SW)mode.展开更多
The study of nuclide production and its properties in the N=126 neutron-rich region is prevalent in nuclear physics and astrophysics research.The upcoming High-energy FRagment Separator(HFRS)at the High-Intensity heav...The study of nuclide production and its properties in the N=126 neutron-rich region is prevalent in nuclear physics and astrophysics research.The upcoming High-energy FRagment Separator(HFRS)at the High-Intensity heavy-ion Accelerator Facility(HIAF),an in-flight separator at relativistic energies,is characterized by high beam intensity,large ion-optical acceptance,high magnetic rigidity,and high momentum resolution power.This provides an opportunity to study the production and properties of neutron-rich nuclei around N=126.In this paper,an experimental scheme is proposed to produce neutron-rich nuclei around N=126 and simultaneously measure their mass and lifetime based on the HFRS separator;the feasibility of this scheme is evaluated through simulations.The results show that under the high-resolution optical mode,many new neutron-rich nuclei approaching the r-process abundance peak around A=195 can be produced for the first time,and many nuclei with unknown masses and lifetimes can be produced with high statistics.Using the time-of-flight corrected by the measured dispersive position and energy loss information,the cocktails produced from 208 Pb fragmentation can be unambiguously identified.Moreover,the masses of some neutron-rich nuclei near N=126 can be measured with high precision using the time-of-flight magnetic rigidity technique.This indicates that the HIAF-HFRS facility has the potential for the production and property research of neutron-rich nuclei around N=126,which is of great significance for expanding the chart of nuclides,developing nuclear theories,and understanding the origin of heavy elements in the universe.展开更多
Short Retraction NoticeThe paper does not meet the standards of "Journal of Applied Mathematics and Physics". This article has been retracted to straighten the academic record. In making this decision the Ed...Short Retraction NoticeThe paper does not meet the standards of "Journal of Applied Mathematics and Physics". This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused.Editor guiding this retraction: Prof. Wen-Xiu Ma (EiC of JAMP)The full retraction notice in PDF is preceding the original paper, which is marked "RETRACTED".展开更多
[Objective] The experiment aimed to study an efficient method of Nuclei extraction of cotton and provided technical support for constructing large-insert genomic library and sequencing complete genome. [Method] The co...[Objective] The experiment aimed to study an efficient method of Nuclei extraction of cotton and provided technical support for constructing large-insert genomic library and sequencing complete genome. [Method] The cotton cotyledons germinated in dark moisture chamber for one week were chopped with a sharp sterile scalpel in a Petri dish which contained ice-cold nucleus isolation buffer (10 mmol/L MgSO4, 5 mmol/L KCl, 0.5 mmol/L HEPES, 1 mg/ml DTT, 0.25% Triton X-100 and 2% PVP40), then the nuclei were collected after selected through 100, 50 and 30 μm nylon meshes and centrifugation. Meanwhile, the tender leaves and cotyledons with different germination time in dark were treated by grinding method and sharp scalpel method. [Result] The chopping with a sharp scalpel method was very simple and rapid, which did not need grind and mercaptoethanol treatment and the successful extraction rate was 100%.[Conclusion] An efficient method of nuclei extraction of cotton with simple, high efficiency, rapid reaction and poison free were established.展开更多
Knowledge of the statistical characteristics of inversions and their effects on aerosols under different large-scale synoptic circulations is important for studying and modeling the diffusion of pollutants in the boun...Knowledge of the statistical characteristics of inversions and their effects on aerosols under different large-scale synoptic circulations is important for studying and modeling the diffusion of pollutants in the boundary layer. Based on results gen- erated using the self-organizing map (SOM) weather classification method, this study compares the statistical characteristics of surface-based inversions (SBIs) and elevated inversions (EIs), and quantitatively evaluates the effect of SBIs on aerosol condensation nuclei (CN) concentrations and the relationship between temperature gradients and aerosols for six prevailing synoptic patterns over the the Southern Great Plains (SGP) site during 2001-10. Large-scale synoptic patterns strongly influ- ence the statistical characteristics of inversions and the accumulation of aerosols in the low-level atmosphere. The activity, frequency, intensity, and vertical distribution of inversions are significantly different among these synoptic patterns. The verti- cal distribution of inversions varies diurnally and is significantly different among the different synoptic patterns. Anticyclonic patterns affect the accumulation of aerosols near the ground more strongly than cyclonic patterns. Mean aerosol CN con- centrations increase during SBIs compared to no inversion cases by 16.1%, 22.6%, 24.5%, 58.7%, 29.8% and 23.7% for the six synoptic patterns. This study confirms that there is a positive correlation between temperature gradients and aerosol CN concentrations near the ground at night under similar large-scale synoptic patterns. The relationship is different for different synoptic patterns and can be described by linear functions. These findings suggest that large-scale synoptic patterns change the static stability of the atmosphere and inversions in the lower atmosphere, thereby influencing the diffusion of aerosols near the ground.展开更多
As the substrate for nucleation of primary austenite in hardfacing metals, the effectiveness of RE inclusions and the most common inclusions such as Al2O3, SiO2 and MnO in hardfacing metals of medium-high carbon steel...As the substrate for nucleation of primary austenite in hardfacing metals, the effectiveness of RE inclusions and the most common inclusions such as Al2O3, SiO2 and MnO in hardfacing metals of medium-high carbon steels was analyzed and calculated in detail. The calculation based on the theory of planar lattice misfit shows that Ce2O3, La2O3 and Ce2O2S, instead of SiO2, Al2O3, MnO and CeS, are effective as the heterogeneous nuclei of primary austenite in medium-high carbon steels.展开更多
Heavy-ion collisions are powerful tools for studying hypernuclear physics.We develop a dynamical coalescence model coupled with an ART model(version1.0) to study the production rates of light nuclear clusters and hype...Heavy-ion collisions are powerful tools for studying hypernuclear physics.We develop a dynamical coalescence model coupled with an ART model(version1.0) to study the production rates of light nuclear clusters and hypernuclei in heavy-ion reactions,for instance,the deuteron(d),triton(t),helium(~3He),and hypertriton(_A^3H)in minimum bias(0-80%centrality)~6Li+^(12)C reactions at beam energy of 3.5A GeV.The penalty factor for light clusters is extracted from the yields,and the distributions of 0 angle of particles,which provide direct suggesetions about the location of particle detectors in the near future facility-High Intensity heavy-ion Accelerator Facility(HIAF) are investigated.Our calculation demonstrates that HIAF is suitable for studying hypernuclear physics.展开更多
The dendrite segregation in cast H13 steel was weakened with RE modification treatment. Grain boundary carbide during quenching was also under control and impact toughness was improved greatly. By thermodynamic calcul...The dendrite segregation in cast H13 steel was weakened with RE modification treatment. Grain boundary carbide during quenching was also under control and impact toughness was improved greatly. By thermodynamic calculation, analysis of two-dimensional lattice misfitting and electron probe analysis, it is found that Ce2O3 may act as the heterogeneous nuclei of modified cast H13 steel.展开更多
The concentration of ice nuclei (IN) and the relationship with aerosol particles were measured and analyzed using three 5-L mixing cloud chambers and a static diffusion cloud chamber at three altitudes in the Huangs...The concentration of ice nuclei (IN) and the relationship with aerosol particles were measured and analyzed using three 5-L mixing cloud chambers and a static diffusion cloud chamber at three altitudes in the Huangshan Mountains in Southeast China from May to September 2011.The results showed that the mean total number concentration of IN on the highest peak of the Huangshan Mountains at an activation temperature (Ta) of-20℃C was 16.6 L-1.When the supersaturation with respect to water (Sw) and with respect to ice (Si) were set to 5%,the average number concentrations of IN measured at an activation temperature of-20℃C by the static diffusion cloud chamber were 0.89 and 0.105 L-1,respectively.A comparison of the concentrations of IN at three different altitudes showed that the concentration of IN at the foot of the mountains was higher than at the peak.A further calculation of the correlation between IN and the concentrations of aerosol particles of different size ranges showed that the IN concentration was well correlated with the concentration of aerosol particles in the size range of 1.2-20 μtm.It was also found that the IN concentration varied with meteorological conditions,such as wind speed,with higher IN concentrations often observed on days with strong wind.An analysis of the backward trajectories of air masses showed that low IN concentrations were often related to air masses travelling along southwest pathways,while higher IN concentrations were usually related to those transported along northeast pathways.展开更多
With the development of radioactive beam facilities,studies concerning the shell evolution of unstable nuclei have recently gained prominence.Intruder components,particularly s-wave intrusion,in the low-lying states o...With the development of radioactive beam facilities,studies concerning the shell evolution of unstable nuclei have recently gained prominence.Intruder components,particularly s-wave intrusion,in the low-lying states of light neutron-rich nuclei near N=8 are of importance in the study of shell evolution.The use of single-nucleon transfer reactions in inverse kinematics has been a sensitive tool that can be used to quantitatively investigate the single-particle orbital component of selectively populated states.The spin-parity,spectroscopic factor(or single-particle strength),and effective singleparticle energy can all be extracted from such reactions.These observables are often useful to explain the nature of shell evolution,and to constrain,check,and test the parameters used in nuclear structure models.In this article,the experimental studies of the intruder components in lowlying states of neutron-rich nuclei of He,Li,Be,B,and C isotopes using various single-nucleon transfer reactions are reviewed.The focus is laid on the precise determination of the intruder s-wave strength in low-lying states.展开更多
The neutron flow model predicts that neutrons start to flow freely between the approaching nuclei ^58Fe and ^208 pb at s=3fm, a length in which the effective surfaces of these nuclei are 3 fm apart. As a result of neu...The neutron flow model predicts that neutrons start to flow freely between the approaching nuclei ^58Fe and ^208 pb at s=3fm, a length in which the effective surfaces of these nuclei are 3 fm apart. As a result of neutron flow, the N/Z value rapidly reaches an equilibrium distribution. Meanwhile the system, originally in the fusion valley, is injected into the asymmetric fission valley. The dynamic process of the composite nucleus in the asymmetric fission valley is treated with a two-parameter Smoluchowski equation. It is shown that the probability to overcome the asymmetric fission barrier and to achieve compound nucleus configuration, hence the fusion cross section is obviously suppressed due to the effect of isospin equilibrium.展开更多
文摘The dynamical moment of inertia is estimated with its even-power expansion of the rotational frequency and in accordance we determine the intermediate spins of the superdeformed(SD)rotational bands.Using Marquardt method of nonlinear least-squares routines,we determine the expansion coefficients by fitting the proposed dynamical moment of inertia with its recent experimental data of the SD nuclei in the A=190 mass region.The comparison between our theoretical and available experimental data for the dynamic moment of inertia and spin shows good agreements. Also,we have calculated the static moment of inertia at three alternative values of spin.The value of spin at which the two moments of inertia are nearly equals is to be regarded as a bandhead spin of the corresponding band.These studies are carried out for eighteen bands of odd-A nuclei of the superdeformed region 190,namely ~(189)Hg(b1),~(191)Hg(b1,b2, b3,b4),~(193)Hg(b2,b3,b5),~(195)Hg(b1,b2,b3,b4),~(193)Tl(b1,b2,b3,b5),~(189)Tl(b1),and~(197)Bi(b1).We also notice the occurrence of identical SD bands with near identical transition energies among the considered SD bands.
基金Supported by the National Natural Science Foundation of China(11775099)the Jiangnan University Basic Research Program(JUSRP202406002)。
文摘Research on the pairing phase transition in the odd-A nucleus ^(161)Dy is based on a sophisticated blend of the covariant density functional theory and the shell-model-like approach.It has been observed that variations in thermodynamic quantities at the critical temperature do not exclusively align with pairing phase transitions.The presence of an S-shaped heat capacity curve,often interpreted as an indicator of such transitions,does not offer a definitive confirmation.Additional factors,including the blocking effect,can modify the heat capacity curve and impede the transition process.The pairing phase transition in ^(161)Dy,which occurs approximately from 0.7 to 1.0 MeV,is unequivocally characterized as a first-order transition.Furthermore,the analysis of the impact of varying strengths of pairing correlations on these transitions reveals a nonlinear relationship,thereby adding complexity to the transition dynamics.
基金Supported by the National Natural Science Foundation of China(11675063,11875070,11205068)the Open fund for Discipline Construction,Institute of Physical Science and Information Technology,Anhui University。
文摘The Bayesian neural network approach has been employed to improve the nuclear magnetic moment predictions of odd-A nuclei.The Schmidt magnetic moment obtained from the extreme single-particle shell model makes large root-mean-square(rms)deviations from data,i.e.,0.949μN and 1.272μN for odd-neutron nuclei and odd-proton nuclei,respectively.By including the dependence of the nuclear spin and Schmidt magnetic moment,the machine-learning approach precisely describes the magnetic moments of odd-A uclei with rms deviations of 0.036μN for odd-neutron nuclei and 0.061μN for odd-proton nuclei.Furthermore,the evolution of magnetic moments along isotopic chains,including the staggering and sudden jump trend,which are difficult to describe using nuclear models,have been well reproduced by the Bayesian neural network(BNN)approach.The magnetic moments of doubly closed-shell±1 nuclei,for example,isoscalar and isovector magnetic moments,have been well studied and compared with the corresponding non-relativistic and relativistic calculations.
基金National Natural Science Foundation of China(10535010,10735010,10775068)Research Fund for Doctoral Pro-gram of Higher Education of China(20070284016)Major State Basic Research Development Program of China(2007CB815004)
文摘By using a simple barrier penetration approach,we predict the α-decay branching ratios to members of ground-state rotational band of heavy even-even No isotopes. We also extend our approach to calculate the α-decay branching ratios to the rotational band of heavy odd-A nuclei. The theoretical branching ratios of α-decays are found in good agreement with the available experimental data.
基金Supported by National Key Basic Research Program of China(2013CB83440)National Natural Science Foundation of China(11375016,11235001,11320101004)Research Fund for Doctoral Program of Higher Education of China(20130001110001)
文摘The coordinate-space Hartree-Fock-Bogoliubov(HFB) approach with quasiparticle blocking has been applied to study the odd-A weakly bound nuclei ^17,19B and ^37Mg,in which halo structures have been reported in experiments.The Skyrme nuclear forces SLy4 and UNEDF1 have been adopted in our calculations.The results with and without blocking have been compared to demonstrate the emergence of deformed halo structures due to blocking effects.In our calculations,^19B and ^37Mg have remarkable features of deformed halos.
基金supported by the National Natural Science Foundation of China(No.11905130).
文摘In this study,we revisit the previous mass relations of mirror nuclei by considering 1/N-and 1/Z-dependent terms and the shell effect across a shell.The root-mean-squared deviation is 66 keV for 116 nuclei with neutron number N≥10,as com-pared with experimental data compiled in the AME2020 database.The predicted mass excesses of 173 proton-rich nuclei,including 98 unknown nuclei,are tabulated in the Supplemental Material herein with competitive accuracy.
基金supported by the National Natural Science Foundation of China(No.11935001)the Natural Science Foundation of Anhui Province(No.2008085MA26).
文摘The exploration of spin symmetry (SS) in nuclear physics has been instrumental in identifying atomic nucleus structures.In this study,we solve the Dirac equation from the relativistic mean field (RMF) in complex momentum representation.We investigated SS and its breaking in single-particle resonant states within deformed nuclei,with a focus on the illustrative nucleus168Er.This was the initial discovery of a resonant spin doublet in a deformed nucleus,with the expectation of the SS approaching the continuum threshold.With increasing single-particle energy,the splitting of the resonant spin doublets widened significantly.This escalating splitting implies diminishing adherence to the SS,indicating a departure from the expected behavior as the energy levels increase.We also analyzed the width of the resonant states,showing that lower orbital angular momentum resonances possess shorter decay times and that SS is preserved within broad resonant doublets,as opposed to narrow resonant doublets.Comparing the radial density of the upper components for the bound-state and resonant-state doublets,it becomes evident that while SS is well-preserved in the bound states,it deteriorates in the resonant states.The impact of nuclear deformation (β_(2)) on SS was examined,demonstrating that an increase in β_(2) resulted in higher energy and width splitting in the resonant spin doublets,which is attributed to increased component mixing.Furthermore,the sensitivity of spin doublets to various potential parameters such as surface diffuseness (a),radius (R),and depth (Σ0) is discussed,emphasizing the role of these parameters in SS.This study provides valuable insights into the behavior of spin doublets in deformed nuclei and their interplay with the nuclear structure,thereby advancing our understanding of SS in the resonance state.
文摘In the current study,we examined every possible cluster-daughter combination in the heavy-particle decay of isotopes ^(297-300)119 and computed the decay half-lives using the modified generalized liquid drop model(MGLDM)with the preformation factor depending on the disintegration energy.The predicted half-life of every heavy cluster(Z_(C)≥32)was within the experimentally observable limits.These results aligned with the predictions of Poenaru et al.[Phys.Rev.Lett.107,062503(2011)]that superheavy nuclei(SHN)with Z>110 will release heavy particles with a penetrability comparable to or greater than theα-decay.The half-lives predicted using the MGLDM for clusters^(89)Rb,^(91)Rb,and^(92)Rb from parents^(297)119,^(299)119,and^(300)119,respectively,agreed with the predictions of Poenaru et al.[Eur.Phys.J.A 54,14(2018)].It was found that the isotopes of heavy clusters Kr,Rb,Sr,Pa,In,and Cd had half-lives comparable to theαhalf-life;and isotopes of clusters I,Xe,and Cs had the minimum half-life(10^(-14)s).These observations revealed the role of the shell closure(Z=82,N=82,and N=126)of the cluster and daughter nuclei in heavy-cluster radioactivity.We predicted that isotope ^(297,299)119 decayed by 4αdecay chains and isotope^(300)119 decayed by 6αdecay chains,while^(298)119 decayed by continuousαdecay chains.The predicted half-lives and modes of decay of the nuclei in the decay chains of^(297-300)119 agreed with the experimental data,proving the reliability of our calculations.The present study determined the most favorable heavy-cluster emissions from these nuclei and provided suitable projectile-target combinations for their synthesis.
基金supported by the National Natural Science Foundation of China(12033006,12192221,123B2042).
文摘A recently released XMM-Newton note revealed a significant calibration issue between nuclear spectroscopic telescope array(NuSTAR)and XMM-Newton European Photon Imaging Camera(EPIC)and provided an empirical correction to the EPIC effective area.To quantify the bias caused by the calibration issue in the joint analysis of XMM-NuSTAR spectra and verify the effectiveness of the correction,in this work,we perform joint-fitting of the NuSTAR and EPIC-pn spectra for a large sample of 104 observation pairs of 44 X-ray bright active galactic nuclei(AGN).The spectra were extracted after requiring perfect simultaneity between the XMM-Newton and NuSTAR exposures(merging good time intervals(GTIs)from two missions)to avoid bias due to the rapid spectral variability of the AGN.Before the correction,the EPIC-pn spectra are systematically harder than the corresponding NuSTAR spectra by■subsequently yielding significantly underestimated cutoff energy E_(cut)and the strength of reflection component R when performing joint-fitting.We confirm that the correction is highly effective and can commendably erase the discrepancy in best-fitΓ,E_(cut),and R.We thus urge the community to apply the correction when joint-fitting XMM-NuSTAR spectra,but note that the correction is limited to 3–12 keV and therefore not applicable when the soft X-ray band data are included.Besides,we show that as merging GTIs from two missions would cause severe loss of NuSTAR net exposure time,in many cases,joint-fitting yields no advantage compared with utilizing NuSTAR data alone.Finally,We present a technical note on filtering periods of high background flares for XMM-Newton EPIC-pn exposures in the small window(SW)mode.
基金supported by the High-Intensity heavy-ion Accelerator Facility (HIAF) project approved by the National Development and Reform Commission of China
文摘The study of nuclide production and its properties in the N=126 neutron-rich region is prevalent in nuclear physics and astrophysics research.The upcoming High-energy FRagment Separator(HFRS)at the High-Intensity heavy-ion Accelerator Facility(HIAF),an in-flight separator at relativistic energies,is characterized by high beam intensity,large ion-optical acceptance,high magnetic rigidity,and high momentum resolution power.This provides an opportunity to study the production and properties of neutron-rich nuclei around N=126.In this paper,an experimental scheme is proposed to produce neutron-rich nuclei around N=126 and simultaneously measure their mass and lifetime based on the HFRS separator;the feasibility of this scheme is evaluated through simulations.The results show that under the high-resolution optical mode,many new neutron-rich nuclei approaching the r-process abundance peak around A=195 can be produced for the first time,and many nuclei with unknown masses and lifetimes can be produced with high statistics.Using the time-of-flight corrected by the measured dispersive position and energy loss information,the cocktails produced from 208 Pb fragmentation can be unambiguously identified.Moreover,the masses of some neutron-rich nuclei near N=126 can be measured with high precision using the time-of-flight magnetic rigidity technique.This indicates that the HIAF-HFRS facility has the potential for the production and property research of neutron-rich nuclei around N=126,which is of great significance for expanding the chart of nuclides,developing nuclear theories,and understanding the origin of heavy elements in the universe.
文摘Short Retraction NoticeThe paper does not meet the standards of "Journal of Applied Mathematics and Physics". This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused.Editor guiding this retraction: Prof. Wen-Xiu Ma (EiC of JAMP)The full retraction notice in PDF is preceding the original paper, which is marked "RETRACTED".
基金Supported by the National Natural Science Foundation of China(No.30170501)the State of New Varieties of GMO Cultivation Major Projects (No.2008ZX08005-003)the National High-tech Research Development Plan (No.2003AA207051)~~
文摘[Objective] The experiment aimed to study an efficient method of Nuclei extraction of cotton and provided technical support for constructing large-insert genomic library and sequencing complete genome. [Method] The cotton cotyledons germinated in dark moisture chamber for one week were chopped with a sharp sterile scalpel in a Petri dish which contained ice-cold nucleus isolation buffer (10 mmol/L MgSO4, 5 mmol/L KCl, 0.5 mmol/L HEPES, 1 mg/ml DTT, 0.25% Triton X-100 and 2% PVP40), then the nuclei were collected after selected through 100, 50 and 30 μm nylon meshes and centrifugation. Meanwhile, the tender leaves and cotyledons with different germination time in dark were treated by grinding method and sharp scalpel method. [Result] The chopping with a sharp scalpel method was very simple and rapid, which did not need grind and mercaptoethanol treatment and the successful extraction rate was 100%.[Conclusion] An efficient method of nuclei extraction of cotton with simple, high efficiency, rapid reaction and poison free were established.
基金sponsored by the U.S. Department of Energy (DOE)supported by the Ministry of Science and Technology of China (Grant Nos. 2010CB950804 and 2013CB955801)+1 种基金the "Strategic Priority Research Program" of the Chinese Academy of Sciences (Grant No. XDA05100300)the National Natural Science Foundation of China (Grant No. 41305011)
文摘Knowledge of the statistical characteristics of inversions and their effects on aerosols under different large-scale synoptic circulations is important for studying and modeling the diffusion of pollutants in the boundary layer. Based on results gen- erated using the self-organizing map (SOM) weather classification method, this study compares the statistical characteristics of surface-based inversions (SBIs) and elevated inversions (EIs), and quantitatively evaluates the effect of SBIs on aerosol condensation nuclei (CN) concentrations and the relationship between temperature gradients and aerosols for six prevailing synoptic patterns over the the Southern Great Plains (SGP) site during 2001-10. Large-scale synoptic patterns strongly influ- ence the statistical characteristics of inversions and the accumulation of aerosols in the low-level atmosphere. The activity, frequency, intensity, and vertical distribution of inversions are significantly different among these synoptic patterns. The verti- cal distribution of inversions varies diurnally and is significantly different among the different synoptic patterns. Anticyclonic patterns affect the accumulation of aerosols near the ground more strongly than cyclonic patterns. Mean aerosol CN con- centrations increase during SBIs compared to no inversion cases by 16.1%, 22.6%, 24.5%, 58.7%, 29.8% and 23.7% for the six synoptic patterns. This study confirms that there is a positive correlation between temperature gradients and aerosol CN concentrations near the ground at night under similar large-scale synoptic patterns. The relationship is different for different synoptic patterns and can be described by linear functions. These findings suggest that large-scale synoptic patterns change the static stability of the atmosphere and inversions in the lower atmosphere, thereby influencing the diffusion of aerosols near the ground.
文摘As the substrate for nucleation of primary austenite in hardfacing metals, the effectiveness of RE inclusions and the most common inclusions such as Al2O3, SiO2 and MnO in hardfacing metals of medium-high carbon steels was analyzed and calculated in detail. The calculation based on the theory of planar lattice misfit shows that Ce2O3, La2O3 and Ce2O2S, instead of SiO2, Al2O3, MnO and CeS, are effective as the heterogeneous nuclei of primary austenite in medium-high carbon steels.
基金supported in part by the Major State Basic Research Development Program in China(Nos.2014CB845401 and2015CB856904)the National Natural Science Foundation of China(Nos.11421505,11520101004,11275250,11322547 and U1232206)Key Program of CAS for the Frontier Science(No.QYZDJ-SSW-SLH002)
文摘Heavy-ion collisions are powerful tools for studying hypernuclear physics.We develop a dynamical coalescence model coupled with an ART model(version1.0) to study the production rates of light nuclear clusters and hypernuclei in heavy-ion reactions,for instance,the deuteron(d),triton(t),helium(~3He),and hypertriton(_A^3H)in minimum bias(0-80%centrality)~6Li+^(12)C reactions at beam energy of 3.5A GeV.The penalty factor for light clusters is extracted from the yields,and the distributions of 0 angle of particles,which provide direct suggesetions about the location of particle detectors in the near future facility-High Intensity heavy-ion Accelerator Facility(HIAF) are investigated.Our calculation demonstrates that HIAF is suitable for studying hypernuclear physics.
文摘The dendrite segregation in cast H13 steel was weakened with RE modification treatment. Grain boundary carbide during quenching was also under control and impact toughness was improved greatly. By thermodynamic calculation, analysis of two-dimensional lattice misfitting and electron probe analysis, it is found that Ce2O3 may act as the heterogeneous nuclei of modified cast H13 steel.
基金sponsored by the National Natural Science Foundation of China (Grant No. 41030962)the Special Fund for doctorate programs in Chinese Universities (Grant No. 20113228110002)+1 种基金the Priority Academic Program of Development of Jiangsu Higher Education Institutions (PAPD)the Key Laboratory for Aerosol–Cloud– Precipitation of the China Meteorological Administration (Grant No. KDW1101)
文摘The concentration of ice nuclei (IN) and the relationship with aerosol particles were measured and analyzed using three 5-L mixing cloud chambers and a static diffusion cloud chamber at three altitudes in the Huangshan Mountains in Southeast China from May to September 2011.The results showed that the mean total number concentration of IN on the highest peak of the Huangshan Mountains at an activation temperature (Ta) of-20℃C was 16.6 L-1.When the supersaturation with respect to water (Sw) and with respect to ice (Si) were set to 5%,the average number concentrations of IN measured at an activation temperature of-20℃C by the static diffusion cloud chamber were 0.89 and 0.105 L-1,respectively.A comparison of the concentrations of IN at three different altitudes showed that the concentration of IN at the foot of the mountains was higher than at the peak.A further calculation of the correlation between IN and the concentrations of aerosol particles of different size ranges showed that the IN concentration was well correlated with the concentration of aerosol particles in the size range of 1.2-20 μtm.It was also found that the IN concentration varied with meteorological conditions,such as wind speed,with higher IN concentrations often observed on days with strong wind.An analysis of the backward trajectories of air masses showed that low IN concentrations were often related to air masses travelling along southwest pathways,while higher IN concentrations were usually related to those transported along northeast pathways.
基金supported by the National Key R&D program of China(No.2018YFA0404403)National Natural Science Foundation of China(Nos.11775004,U1867214,and 11535004)
文摘With the development of radioactive beam facilities,studies concerning the shell evolution of unstable nuclei have recently gained prominence.Intruder components,particularly s-wave intrusion,in the low-lying states of light neutron-rich nuclei near N=8 are of importance in the study of shell evolution.The use of single-nucleon transfer reactions in inverse kinematics has been a sensitive tool that can be used to quantitatively investigate the single-particle orbital component of selectively populated states.The spin-parity,spectroscopic factor(or single-particle strength),and effective singleparticle energy can all be extracted from such reactions.These observables are often useful to explain the nature of shell evolution,and to constrain,check,and test the parameters used in nuclear structure models.In this article,the experimental studies of the intruder components in lowlying states of neutron-rich nuclei of He,Li,Be,B,and C isotopes using various single-nucleon transfer reactions are reviewed.The focus is laid on the precise determination of the intruder s-wave strength in low-lying states.
基金Supported by the National Natural Science Foundation of China under Grants Nos 10235020 and 10235030, and the Major State Basic Research Development Programme under Grant No G200007400.
文摘The neutron flow model predicts that neutrons start to flow freely between the approaching nuclei ^58Fe and ^208 pb at s=3fm, a length in which the effective surfaces of these nuclei are 3 fm apart. As a result of neutron flow, the N/Z value rapidly reaches an equilibrium distribution. Meanwhile the system, originally in the fusion valley, is injected into the asymmetric fission valley. The dynamic process of the composite nucleus in the asymmetric fission valley is treated with a two-parameter Smoluchowski equation. It is shown that the probability to overcome the asymmetric fission barrier and to achieve compound nucleus configuration, hence the fusion cross section is obviously suppressed due to the effect of isospin equilibrium.