期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Learning Particle Swarm Optimization Algorithm for Odor Source Localization 被引量:2
1
作者 Qiang Lu Ping Luo 《International Journal of Automation and computing》 EI 2011年第3期371-380,共10页
This paper is concerned with the problem of odor source localization using multi-robot system. A learning particle swarm optimization algorithm, which can coordinate a multi-robot system to locate the odor source, is ... This paper is concerned with the problem of odor source localization using multi-robot system. A learning particle swarm optimization algorithm, which can coordinate a multi-robot system to locate the odor source, is proposed. First, in order to develop the proposed algorithm, a source probability map for a robot is built and updated by using concentration magnitude information, wind information, and swarm information. Based on the source probability map, the new position of the robot can be generated. Second, a distributed coordination architecture, by which the proposed algorithm can run on the multi-robot system, is designed. Specifically, the proposed algorithm is used on the group level to generate a new position for the robot. A consensus algorithm is then adopted on the robot level in order to control the robot to move from the current position to the new position. Finally, the effectiveness of the proposed algorithm is illustrated for the odor source localization problem. 展开更多
关键词 Multi-robot system odor source localization particle swarm optimization source probability map distributed coordination architecture.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部