Quantitatively correcting the unconfined compressive strength for sample disturbance is an important research project in the practice of ocean engineering and geotechnical engineering. In this study, the specimens of ...Quantitatively correcting the unconfined compressive strength for sample disturbance is an important research project in the practice of ocean engineering and geotechnical engineering. In this study, the specimens of undisturbed natural marine clay obtained from the same depth at the same site were deliberately disturbed to different levels. Then, the specimens with different extents of sample disturbance were trimmed for both oedometer tests and unconfined compression tests. The degree of sample disturbance SD is obtained from the oedometer test data. The relationship between the unconfined compressive strength q u and SD is studied for investigating the effect of sample disturbance on q u. It is found that the value of q u decreases linearly with the increase in SD. Then, a simple method of correcting q u for sample disturbance is proposed. Its validity is also verified through analysis of the existing published data.展开更多
The main objective of this study was to determine the consolidation behaviour of clay slurries.A finegrained clay with high consistency limits(W_L = 180%,w_P= 120%) was investigated using conventional oedometer and be...The main objective of this study was to determine the consolidation behaviour of clay slurries.A finegrained clay with high consistency limits(W_L = 180%,w_P= 120%) was investigated using conventional oedometer and bench-top centrifuge tests.Results indicated that the slurry had an apparent preconsolidation(due to initial conditions,electrochemical interactions,tortuous drainage,and thixotropic strength) from e = 5.7 to e = 5.5 followed by virgin compression.Likewise,the low hydraulic conductivity(10^(-10)-10^(-12) m/s) was due to low porosity(small pore throats) and high tortuosity(long flow paths).Unlike consolidation of soils,the c_v and m_v decreased with increasing σ' but increased with increasing e and k.The data from the two tests correlated well in the range of σ' = 10-65 kPa,e = 5.5-3.86,k= 1.7 × 10^(-10)-5×10^(-11) m/s,F_c = 1-40 MN.New equations were developed to correlate the consolidation parameters(e,σ',k) with F_c.The deviation of k beyond 40 MN(e = 4.65) was due to deviation from the initial straight line portion of the settlement curve in the centrifuge test.展开更多
This work focuses on the uniqueness of rate-dependency, creep and stress relaxation behaviors for soft clays under one-dimensional condition. An elasto-viscoplastic model is briefly introduced based on the rate-depend...This work focuses on the uniqueness of rate-dependency, creep and stress relaxation behaviors for soft clays under one-dimensional condition. An elasto-viscoplastic model is briefly introduced based on the rate-dependency of preconsolidation pressure. By comparing the rate-dependency formulation with the creep based formulation, the relationship between rate-dependency and creep behaviors is firstly described. The rate-dependency based formulation is then extended to derive an analytical solution for the stress relaxation behavior with defining a stress relaxation coefficient. Based on this, the relationship between the rate-dependency coefficient and the stress relaxation coefficient is derived. Therefore, the uniqueness between behaviors of rate-dependency, creep and stress relaxation with their key parameters is obtained. The uniqueness is finally validated by comparing the simulated rate-dependency of preconsolidation pressure, the estimated values of secondary compression coefficient and simulations of stress relaxation tests with test results on both reconstituted Illite and Berthierville clay.展开更多
A brief review of the former studies on the mechanisms of soil rheology and microstructure is presented. Then a microstructure model and a set of rheological constitutive relations for sott clays, which describe how t...A brief review of the former studies on the mechanisms of soil rheology and microstructure is presented. Then a microstructure model and a set of rheological constitutive relations for sott clays, which describe how the rheological consolidation settlement develops, are established in the framework of the catastrophe theory. The validity of this model is verified by a series of rheological consolidation experiments with different loading rates. The experimental data show that creep deformation can be clearly observed in these tests, and the consolidation settlement is loading rate dependent. The characteristics of the deformation can be explained and reproduced successfully using the model. It can be concluded that only the biggest set of voids would collapse for one load increment. Parameters in the model, k and η, are gained by curve fitting. With only two free parameters, good fits of the data are achieved.展开更多
Extensive oedometer tests and physical tests have been conducted on remolded and reconstituted marine soils with different initial water contents and liquid limits. The oedometer test data can be well fitted with a st...Extensive oedometer tests and physical tests have been conducted on remolded and reconstituted marine soils with different initial water contents and liquid limits. The oedometer test data can be well fitted with a straight line in the bilogarithmic ln(1+ e ) ~ lg p plot. The initial effective stress corresponding to the initial void ratio is determined by extrapolation of the bilogarithmic compression line. This new way of extrapolating oedometer test data to the initial void ratio overcomes the difficulty of measuring the residual effective stress of soils in the remolded state. The initial stable compression line of ocean floor deposits under different deposition environments corresponds to the compression line at the sensitivity equal to one. This initial stable compression line obtained in this study is consistent with the available compression line at the sensitivity equal to one which is proposed based on the experimental data of remolded undrained strength and the theoretical concept of Cam clay critical state line.展开更多
This paper reports experimental results regarding statically compacted clay specimens to study the volume change behavior of bentonites. The volume change indices such as the coefficients of compressibility, volume co...This paper reports experimental results regarding statically compacted clay specimens to study the volume change behavior of bentonites. The volume change indices such as the coefficients of compressibility, volume compressibility, and consolidation ( i. e. av, mv. and cv respectively) and the saturated coefficient of permeability k at different surcharge pressures were determined with the commonly adopted procedures. The swell potentials, swelling pressures, different phases of the swollen specimens were analyzed for the volume change behavior during compression. Experimental results revealed that the swell potential is dependent on the initial dry density, the initial water content and the vertical pressure at which the clay specimens were allowed to swell. The swelling pressure was found to be similar for the specimens with varying water content, showing strong dependency on the initial void ratio. The compression indices ( viz. mv and av) of saturated specimens decreased with an increase in the vertical pressure. About 80% to 90% of the volume change occurred in the primary compression phase under any given vertical pressure. The coefficient of consolidation cr. and the saturated coefficient of permeability k decreased with an increase in the vertical pressure.展开更多
EPS composite soil is one type of premixed lightweight fills studied by numerous researchers, However, one aspect that has not been fully understood is the creep behaviors which may have significant effect on the desi...EPS composite soil is one type of premixed lightweight fills studied by numerous researchers, However, one aspect that has not been fully understood is the creep behaviors which may have significant effect on the design and application of EPS com- posite soil. In this paper, the results of a series of oedometer creep tests and triaxial undrained creep tests on EPS composite soil were presented. Four main influencing factors were identified and their effects on the creep behaviors of EPS composite soil were studied. Three well established creep models, namely, Findley model, Singh & Mitchell model, and Mesri model, were used to simulate the creep behavior of EPS composite soil. This study shows that the Findley creep model fits the test re- suits the best. A semi-empirical creep model was also proposed to model the creep behavior under axisymmetric conditions. In this model, the creep strain was divided into instant and viscous elastic strain as well as instant and viscous plastic strain which were simulated by element models and empirical equations, respectively. It was shown that the proposed creep model was able to precisely predict the creep strain of EPS composite soil.展开更多
The hydro-mechanical behaviour of compacted expansive Romainville clay was investigated.The soil was air-dried,crushed,and passed through a 2 mm sieve before being statically compacted to a dry density of 1.35 Mg/m3.T...The hydro-mechanical behaviour of compacted expansive Romainville clay was investigated.The soil was air-dried,crushed,and passed through a 2 mm sieve before being statically compacted to a dry density of 1.35 Mg/m3.The mechanical behaviour was investigated by tests in oedometer with controlled suction using the vapor equilibrium technique(suction s=0,9,39,and 110 MPa).The vertical stress was applied in the range of 0-800 kPa.The experimental results are shown as follows:1)wetting-induced swelling was higher at lower vertical stresses;2)the vertical stress under which no swelling occurred during water flooding was estimated at 60 kPa,which can be considered as the swelling pressure of the soil tested;3)the soil compressibility(changes of volume upon stress increases)was strongly influenced by the soil suction:the lower the suction,the higher the compressibility.The hydraulic behaviour was investigated using a large-scale infiltration chamber(800mm×1000 mm in section and 1000mm high).The large size of the soil column allowed bttrying the volumetric water content sensors(ThetaProbe)without significantly affecting the water transfer and the soil swelling during infiltration.The soil suction was monitored along the soil height(every 100 mm)using various relative humidity sensors and psychrometers.In the infiltration test,water was kept on the soil surface and changes in suction and volumetric water content were monitored for 338 d.The wetting front has reached the bottom of the soil column at the end of the test.The data from the simultaneous monitoring of suction and water content were used to determine the water retention curve and the unsaturated hydraulic conductivity using the instantaneous profile method.It has been observed that the soil water retention curve depends on the soil depth;that is to be related to the soil depthdependent swelling.The unsaturated hydraulic conductiv-ity was found to be quite low,comprised between 3×10-11m/s(at saturated state)and 10-14m/s(at about 100 MPa suction).展开更多
文摘Quantitatively correcting the unconfined compressive strength for sample disturbance is an important research project in the practice of ocean engineering and geotechnical engineering. In this study, the specimens of undisturbed natural marine clay obtained from the same depth at the same site were deliberately disturbed to different levels. Then, the specimens with different extents of sample disturbance were trimmed for both oedometer tests and unconfined compression tests. The degree of sample disturbance SD is obtained from the oedometer test data. The relationship between the unconfined compressive strength q u and SD is studied for investigating the effect of sample disturbance on q u. It is found that the value of q u decreases linearly with the increase in SD. Then, a simple method of correcting q u for sample disturbance is proposed. Its validity is also verified through analysis of the existing published data.
基金the University of Regina for providing laboratory space and the Natural Science and Engineering Research Council of Canada for financial assistance
文摘The main objective of this study was to determine the consolidation behaviour of clay slurries.A finegrained clay with high consistency limits(W_L = 180%,w_P= 120%) was investigated using conventional oedometer and bench-top centrifuge tests.Results indicated that the slurry had an apparent preconsolidation(due to initial conditions,electrochemical interactions,tortuous drainage,and thixotropic strength) from e = 5.7 to e = 5.5 followed by virgin compression.Likewise,the low hydraulic conductivity(10^(-10)-10^(-12) m/s) was due to low porosity(small pore throats) and high tortuosity(long flow paths).Unlike consolidation of soils,the c_v and m_v decreased with increasing σ' but increased with increasing e and k.The data from the two tests correlated well in the range of σ' = 10-65 kPa,e = 5.5-3.86,k= 1.7 × 10^(-10)-5×10^(-11) m/s,F_c = 1-40 MN.New equations were developed to correlate the consolidation parameters(e,σ',k) with F_c.The deviation of k beyond 40 MN(e = 4.65) was due to deviation from the initial straight line portion of the settlement curve in the centrifuge test.
基金Projects(41372285,41272317,51278449,51238009)supported by the National Natural Science Foundation of ChinaProject(20110073120012)supported by Research Fund for the Doctoral Program of Higher Education of ChinaProject(PIAPP-GA2011-286397)supported by the European Program CREEP
文摘This work focuses on the uniqueness of rate-dependency, creep and stress relaxation behaviors for soft clays under one-dimensional condition. An elasto-viscoplastic model is briefly introduced based on the rate-dependency of preconsolidation pressure. By comparing the rate-dependency formulation with the creep based formulation, the relationship between rate-dependency and creep behaviors is firstly described. The rate-dependency based formulation is then extended to derive an analytical solution for the stress relaxation behavior with defining a stress relaxation coefficient. Based on this, the relationship between the rate-dependency coefficient and the stress relaxation coefficient is derived. Therefore, the uniqueness between behaviors of rate-dependency, creep and stress relaxation with their key parameters is obtained. The uniqueness is finally validated by comparing the simulated rate-dependency of preconsolidation pressure, the estimated values of secondary compression coefficient and simulations of stress relaxation tests with test results on both reconstituted Illite and Berthierville clay.
基金Project(51079126) supported by the National Natural Science Foundation of ChinaProject(Y1090971) supported by the Natural Science Foundation of Zhejiang Province, China
文摘A brief review of the former studies on the mechanisms of soil rheology and microstructure is presented. Then a microstructure model and a set of rheological constitutive relations for sott clays, which describe how the rheological consolidation settlement develops, are established in the framework of the catastrophe theory. The validity of this model is verified by a series of rheological consolidation experiments with different loading rates. The experimental data show that creep deformation can be clearly observed in these tests, and the consolidation settlement is loading rate dependent. The characteristics of the deformation can be explained and reproduced successfully using the model. It can be concluded that only the biggest set of voids would collapse for one load increment. Parameters in the model, k and η, are gained by curve fitting. With only two free parameters, good fits of the data are achieved.
文摘Extensive oedometer tests and physical tests have been conducted on remolded and reconstituted marine soils with different initial water contents and liquid limits. The oedometer test data can be well fitted with a straight line in the bilogarithmic ln(1+ e ) ~ lg p plot. The initial effective stress corresponding to the initial void ratio is determined by extrapolation of the bilogarithmic compression line. This new way of extrapolating oedometer test data to the initial void ratio overcomes the difficulty of measuring the residual effective stress of soils in the remolded state. The initial stable compression line of ocean floor deposits under different deposition environments corresponds to the compression line at the sensitivity equal to one. This initial stable compression line obtained in this study is consistent with the available compression line at the sensitivity equal to one which is proposed based on the experimental data of remolded undrained strength and the theoretical concept of Cam clay critical state line.
文摘This paper reports experimental results regarding statically compacted clay specimens to study the volume change behavior of bentonites. The volume change indices such as the coefficients of compressibility, volume compressibility, and consolidation ( i. e. av, mv. and cv respectively) and the saturated coefficient of permeability k at different surcharge pressures were determined with the commonly adopted procedures. The swell potentials, swelling pressures, different phases of the swollen specimens were analyzed for the volume change behavior during compression. Experimental results revealed that the swell potential is dependent on the initial dry density, the initial water content and the vertical pressure at which the clay specimens were allowed to swell. The swelling pressure was found to be similar for the specimens with varying water content, showing strong dependency on the initial void ratio. The compression indices ( viz. mv and av) of saturated specimens decreased with an increase in the vertical pressure. About 80% to 90% of the volume change occurred in the primary compression phase under any given vertical pressure. The coefficient of consolidation cr. and the saturated coefficient of permeability k decreased with an increase in the vertical pressure.
基金supported by the Natural Science Foundation of Jiangsu Province,China (Grant No. BK2008040)National Natural Science Foundation of China (Grant No. 51109107)China Postdoctoral Science Foundation (Grant No. 2012M5112)
文摘EPS composite soil is one type of premixed lightweight fills studied by numerous researchers, However, one aspect that has not been fully understood is the creep behaviors which may have significant effect on the design and application of EPS com- posite soil. In this paper, the results of a series of oedometer creep tests and triaxial undrained creep tests on EPS composite soil were presented. Four main influencing factors were identified and their effects on the creep behaviors of EPS composite soil were studied. Three well established creep models, namely, Findley model, Singh & Mitchell model, and Mesri model, were used to simulate the creep behavior of EPS composite soil. This study shows that the Findley creep model fits the test re- suits the best. A semi-empirical creep model was also proposed to model the creep behavior under axisymmetric conditions. In this model, the creep strain was divided into instant and viscous elastic strain as well as instant and viscous plastic strain which were simulated by element models and empirical equations, respectively. It was shown that the proposed creep model was able to precisely predict the creep strain of EPS composite soil.
基金This work was supported by the Chutianscholar program.
文摘The hydro-mechanical behaviour of compacted expansive Romainville clay was investigated.The soil was air-dried,crushed,and passed through a 2 mm sieve before being statically compacted to a dry density of 1.35 Mg/m3.The mechanical behaviour was investigated by tests in oedometer with controlled suction using the vapor equilibrium technique(suction s=0,9,39,and 110 MPa).The vertical stress was applied in the range of 0-800 kPa.The experimental results are shown as follows:1)wetting-induced swelling was higher at lower vertical stresses;2)the vertical stress under which no swelling occurred during water flooding was estimated at 60 kPa,which can be considered as the swelling pressure of the soil tested;3)the soil compressibility(changes of volume upon stress increases)was strongly influenced by the soil suction:the lower the suction,the higher the compressibility.The hydraulic behaviour was investigated using a large-scale infiltration chamber(800mm×1000 mm in section and 1000mm high).The large size of the soil column allowed bttrying the volumetric water content sensors(ThetaProbe)without significantly affecting the water transfer and the soil swelling during infiltration.The soil suction was monitored along the soil height(every 100 mm)using various relative humidity sensors and psychrometers.In the infiltration test,water was kept on the soil surface and changes in suction and volumetric water content were monitored for 338 d.The wetting front has reached the bottom of the soil column at the end of the test.The data from the simultaneous monitoring of suction and water content were used to determine the water retention curve and the unsaturated hydraulic conductivity using the instantaneous profile method.It has been observed that the soil water retention curve depends on the soil depth;that is to be related to the soil depthdependent swelling.The unsaturated hydraulic conductiv-ity was found to be quite low,comprised between 3×10-11m/s(at saturated state)and 10-14m/s(at about 100 MPa suction).