期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
DOA Estimation Based on Root Sparse Bayesian Learning Under Gain and Phase Error 被引量:1
1
作者 Dingke Yu Xin Wang +4 位作者 Wenwei Fang Zixian Ma Bing Lan Chunyi Song Zhiwei Xu 《Journal of Communications and Information Networks》 EI CSCD 2022年第2期202-213,共12页
The direction of arrival(DOA)is approximated by first-order Taylor expansion in most of the existing methods,which will lead to limited estimation accuracy when using coarse mesh owing to the off-grid error.In this pa... The direction of arrival(DOA)is approximated by first-order Taylor expansion in most of the existing methods,which will lead to limited estimation accuracy when using coarse mesh owing to the off-grid error.In this paper,a new root sparse Bayesian learning based DOA estimation method robust to gain-phase error is proposed,which dynamically adjusts the grid angle under coarse grid spacing to compensate the off-grid error and applies the expectation maximization(EM)method to solve the respective iterative formula-based on the prior distribution of each parameter.Simulation results verify that the proposed method reduces the computational complexity through coarse grid sampling while maintaining a reasonable accuracy under gain and phase errors,as compared to the existing methods. 展开更多
关键词 direction of arrival estimation gain-phase error root sparse bayesian learning off-grid error
原文传递
改进嵌套稀疏圆阵下基于OGSBL的DOA估计方法
2
作者 史鑫磊 张贞凯 《电光与控制》 CSCD 北大核心 2022年第4期37-43,共7页
针对现有基于嵌套稀疏圆阵DOA估计方法计算复杂度高、超参数无法快速选取问题,提出了一种基于改进嵌套稀疏圆阵的离格稀疏贝叶斯学习(OGSBL)方法。该方法首先将改进嵌套稀疏圆阵接收信号的协方差矩阵进行向量化处理,然后构造扩展的观测... 针对现有基于嵌套稀疏圆阵DOA估计方法计算复杂度高、超参数无法快速选取问题,提出了一种基于改进嵌套稀疏圆阵的离格稀疏贝叶斯学习(OGSBL)方法。该方法首先将改进嵌套稀疏圆阵接收信号的协方差矩阵进行向量化处理,然后构造扩展的观测矩阵,进而结合离格模型与稀疏贝叶斯学习算法实现欠定的DOA估计。仿真实验结果表明,所提算法降低了计算复杂度,模型超参数可自适应调整,且在低信噪比、小快拍数和多信源情况下的均方根误差性能优于原嵌套稀疏圆阵和传统均匀圆阵的测向算法。 展开更多
关键词 波达角估计 虚拟化 嵌套稀疏圆阵 离格稀疏贝叶斯学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部