The proportion of elderly patients in intensive care is increasing, and a significant proportion of them require mechanical ventilation. How to implement safe and effective mechanical ventilation for elderly patients,...The proportion of elderly patients in intensive care is increasing, and a significant proportion of them require mechanical ventilation. How to implement safe and effective mechanical ventilation for elderly patients, and when appropriate off-line is an important issue in the field of critical care medicine. Appropriate sedation can improve patient outcomes, but excessive sedation may lead to prolonged mechanical ventilation and increase the risk of complications. Elderly patients should be closely monitored and evaluated on an individual basis while offline, and the sedation regimen should be dynamically adjusted. This requires the healthcare team to consider the patient’s sedation needs, disease status, and pharmacodynamics and pharmacokinetics of the drug to arrive at the best strategy. Although the current research has provided valuable insights and strategies for sedation and off-line management, there are still many problems to be further explored and solved.展开更多
The effects of on-line solution, off-line solution and aging heat treatment on the microstructure and hardness of the die-cast AZ91D alloys were investigated. Brinell hardness of die-cast AZ91D alloy increases through...The effects of on-line solution, off-line solution and aging heat treatment on the microstructure and hardness of the die-cast AZ91D alloys were investigated. Brinell hardness of die-cast AZ91D alloy increases through on-line solution and off-line aging treatment but decreases after off-line solution treatment. By X-ray diffractometry, optical microscopy, differential thermal analysis, scanning electron microscopy and X-ray energy dispersive spectroscopy, it is found that the microstructures of the die-cast AZ91D magnesium alloy before and after on-line solution and off-line aging are similar, consisting of α-Mg and β-Al12Mg17. The precipitation of Al element is prevented by on-line solution so that the effect of solid solution strengthening is enhanced. The β-Al12Mg17 phases precipitate from supersaturated Mg solid solution after off-line aging treatment, and lead to microstructure refinement of AZ91D alloy, so the effect of precipitation hardening is enhanced. The β-Al12Mg17 phases dissolve in the substructure after off-line solution treatment, which leads to that the grain boundary strengthening phase is reduced significantly and the hardness of die cast AZ91D is reduced.展开更多
The IAP (Institute of Atmospheric Physics) land-surface model (IAP94) is described. This model is a comprehensive one with detailed description for the processes of vegetation, snow and soil. Particular attention has ...The IAP (Institute of Atmospheric Physics) land-surface model (IAP94) is described. This model is a comprehensive one with detailed description for the processes of vegetation, snow and soil. Particular attention has been paid to the cases with three water phases in the surface media. On the basis of the mixture theory and the theory of fluid dynamics of porous media, the system of universal conservational equations for water and heat of soil, snow and vegetation canopy has been constructed. On this background, all important factors that may affect the water and heat balance in media can be considered naturally, and each factor and term possess distinct physical meaning. In the computation of water content and temperature, the water phase change and the heat transportation by water flow are taken into account. Moreover, particular attention has been given to the water vapor diffusion in soil for arid or semi-arid cases, and snow compaction. In the treatment of surface turbulent fluxes, the difference between aerodynamic and thermal roughness is taken into account. The aerodynamic roughness of vegetation is calculated as a function of canopy density, height and zero-plane displacement. An extrapolation of log linear and exponential relationship is used when calculating the wind profile within canopy. The model has been validated against field measurements in off-line simulations. The desirable model′s performance leads to the conclusion that the IAP94 is able to reproduce the main physical mechanisms governing the energy and water balances in the global land surface. Part II of the present study will concern the validation in a 3-D experiment coupled with the IAP Two-Level AGCM.展开更多
Off-line programming (OLP) system becomes one of the most important programming modules for the robotic belt grinding process, however there lacks research on increasing the grinding dexterous space depending on the...Off-line programming (OLP) system becomes one of the most important programming modules for the robotic belt grinding process, however there lacks research on increasing the grinding dexterous space depending on the OLP system. A new type of grinding robot and a novel robotic belt grinding workcell are forwarded, and their features are briefly introduced. An open and object-oriented off-line programming system is developed for this robotic belt grinding system. The parameters of the trimmed surface are read from the initial graphics exchange specification (IGES) file of the CAD model of the workpiece. The deBoor-Cox basis function is used to sample the grinding target with local contact frame on the workpiece. The numerical formula of inverse kinematics is set up based on Newton's iterative procedure, to calculate the grinding robot configurations corresponding to the grinding targets. After the grinding path is obtained, the OLP system turns to be more effective than the teach-by-showing system. In order to improve the grinding workspace, an optimization algorithm for dynamic tool frame is proposed and performed on the special robotic belt grinding system. The initial tool frame and the interval of neighboring tool frames are defined as the preparation of the algorithm. An optimized tool local frame can be selected to grind the complex surface for a maximum dexterity index of the robot. Under the optimization algorithm, a simulation of grinding a vane is included and comparison of grinding workspace is done before and after the tool frame optimization. By the algorithm, the grinding workspace can be enlarged. Moreover the dynamic tool frame can be considered to add one degree-of-freedom to the grinding kinematical chain, which provides the theoretical support for the improvement of robotic dexterity for the complex surface grinding.展开更多
In order to further understand the land surface processes over the northern Tibetan Plateau, this study produced an off-line simulated examination at the Bujiao site on the northern Tibetan Plateau from June 2002 to A...In order to further understand the land surface processes over the northern Tibetan Plateau, this study produced an off-line simulated examination at the Bujiao site on the northern Tibetan Plateau from June 2002 to April 2004, using the Noah Land Surface Model (Noah LSM) and observed data from the CAMP/Tibet experiment. The observed data were neces- sarily corrected and the number of soil layers in the Noah LSM was changed from 4 to 10 to enable this off-line simulation and analysis. The main conclusions are as follows: the Noah LSM performed well on the northern Tibetan Plateau. The simulated net radiation, upward longwave radiation, and upward shortwave radiation demonstrated the same remarkable annual and seasonal variation as the observed data, especially the upward longwave radiation. The simulated soil temperatures were acceptably close to the observed temperatures, especially in the shallow soil layers. The simulated freezing and melting processes were shown to start from the surface soil layer and spread down to the deep soil layers, but they took longer than the observed processes. However, Noah LSM did not adequately simulate the soil moisture. Therefore, additional high-quality, long-term observations of land surface-atmosphere processes over the Tibetan Plateau will be a key factor in proper adiustments of the model parameters in the future.展开更多
Scanning Mobility Particle Sizer (SMPS) spectrometers are subject to several restrictions when a radioactive source is employed to bring the aerosol to a steady-state charge distribution. An alternative solution, comm...Scanning Mobility Particle Sizer (SMPS) spectrometers are subject to several restrictions when a radioactive source is employed to bring the aerosol to a steady-state charge distribution. An alternative solution, commercially available, is represented by the soft X-ray neutralizer. The present study investigates the outcome of a combination of a Grimm SMPS, which employs a 241Am radioactive source, with the soft X-ray advanced aerosol neutralizer (TSI model 3087). To date, the latter device has been interfaced only with TSI’s Electrostatic Classifiers. Particle size distribution of sodium chloride aerosol was measured with both neutralizers and it was found that the particle number concentration agreed to be within 9% for the 10 - 700 nm range. This difference mainly corresponds to the bias reported by TSI, when the X-ray device is mounted on a TSI spectrometer. It was concluded that the X-ray neutralizer could be usefully employed, as a standalone device, in combination with Grimm Electrostatic Classifiers.展开更多
Segmentation of cursive text has been one of the major problems in Arabic writing. The problem is the shape of the letter which is context sensitive, depending on it’s location within a word. Many text recognition sy...Segmentation of cursive text has been one of the major problems in Arabic writing. The problem is the shape of the letter which is context sensitive, depending on it’s location within a word. Many text recognition systems recognize text imagery at the character level and assemble words from the recognized characters. Unfortunately this approach does not work with Arabic text. In this paper we describe a new approach to segment Arabic text imagery at a word level, without analyzing individual characters. This approach avoids the problem of individual characters segmentation, and can overcome local errors in character recognition.展开更多
A study of the interference simulation based on robot welding of the radar pedestal was carried out by using the KUKA Sim Pro simulation software and off-line program technology. Compared with the actual robot welding...A study of the interference simulation based on robot welding of the radar pedestal was carried out by using the KUKA Sim Pro simulation software and off-line program technology. Compared with the actual robot welding process, it was found that the trajectory of the simulated robot welding process in line with that recorded in the actual welding process, and the actual limit and interference appeared at the same place as the simulation process. There was no interference phenomenon on the outside weld-seam; on the internal weld-seam, especially on the weld-joint of support plate connected to the cylinder, a phenomenon of interference appeared. It was helpful to use the simulation method to guide the actual robot welding so as to protect robot from impacting and reduce the weld defects.展开更多
Thick walled curve welding are usually joined by multi-layer and multi-pass welding, which quality and efficiency could be improved by off-line programming of robot welding. However, the precision of off-line programm...Thick walled curve welding are usually joined by multi-layer and multi-pass welding, which quality and efficiency could be improved by off-line programming of robot welding. However, the precision of off-line programming welding path was decreased due to the deviation between the off-line planned welding path and the actual welding path. A path planning algorithm and a path compensation algorithm of multi-layer and multi-pass curve welding seam for off-line programming of robot welding are developed in this paper. Experimental results show that the robot off-line programming improves the welding efftcieney and precision for thick walled curve welding seam.展开更多
文摘The proportion of elderly patients in intensive care is increasing, and a significant proportion of them require mechanical ventilation. How to implement safe and effective mechanical ventilation for elderly patients, and when appropriate off-line is an important issue in the field of critical care medicine. Appropriate sedation can improve patient outcomes, but excessive sedation may lead to prolonged mechanical ventilation and increase the risk of complications. Elderly patients should be closely monitored and evaluated on an individual basis while offline, and the sedation regimen should be dynamically adjusted. This requires the healthcare team to consider the patient’s sedation needs, disease status, and pharmacodynamics and pharmacokinetics of the drug to arrive at the best strategy. Although the current research has provided valuable insights and strategies for sedation and off-line management, there are still many problems to be further explored and solved.
基金Projects (2011BAE22B01, 2011BAE22B06) supported by the National Key Technologies R&D Program During the 12th Five-Year Plan Period of ChinaProject (2010NC018) supported by the Innovation Fund of Inner Mongolia University of Science and Technology, China
文摘The effects of on-line solution, off-line solution and aging heat treatment on the microstructure and hardness of the die-cast AZ91D alloys were investigated. Brinell hardness of die-cast AZ91D alloy increases through on-line solution and off-line aging treatment but decreases after off-line solution treatment. By X-ray diffractometry, optical microscopy, differential thermal analysis, scanning electron microscopy and X-ray energy dispersive spectroscopy, it is found that the microstructures of the die-cast AZ91D magnesium alloy before and after on-line solution and off-line aging are similar, consisting of α-Mg and β-Al12Mg17. The precipitation of Al element is prevented by on-line solution so that the effect of solid solution strengthening is enhanced. The β-Al12Mg17 phases precipitate from supersaturated Mg solid solution after off-line aging treatment, and lead to microstructure refinement of AZ91D alloy, so the effect of precipitation hardening is enhanced. The β-Al12Mg17 phases dissolve in the substructure after off-line solution treatment, which leads to that the grain boundary strengthening phase is reduced significantly and the hardness of die cast AZ91D is reduced.
文摘The IAP (Institute of Atmospheric Physics) land-surface model (IAP94) is described. This model is a comprehensive one with detailed description for the processes of vegetation, snow and soil. Particular attention has been paid to the cases with three water phases in the surface media. On the basis of the mixture theory and the theory of fluid dynamics of porous media, the system of universal conservational equations for water and heat of soil, snow and vegetation canopy has been constructed. On this background, all important factors that may affect the water and heat balance in media can be considered naturally, and each factor and term possess distinct physical meaning. In the computation of water content and temperature, the water phase change and the heat transportation by water flow are taken into account. Moreover, particular attention has been given to the water vapor diffusion in soil for arid or semi-arid cases, and snow compaction. In the treatment of surface turbulent fluxes, the difference between aerodynamic and thermal roughness is taken into account. The aerodynamic roughness of vegetation is calculated as a function of canopy density, height and zero-plane displacement. An extrapolation of log linear and exponential relationship is used when calculating the wind profile within canopy. The model has been validated against field measurements in off-line simulations. The desirable model′s performance leads to the conclusion that the IAP94 is able to reproduce the main physical mechanisms governing the energy and water balances in the global land surface. Part II of the present study will concern the validation in a 3-D experiment coupled with the IAP Two-Level AGCM.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2007AA04Z2443)State Key Laboratory for Man ufacturing Systems Engineering of Xi’an Jiaotong University of China
文摘Off-line programming (OLP) system becomes one of the most important programming modules for the robotic belt grinding process, however there lacks research on increasing the grinding dexterous space depending on the OLP system. A new type of grinding robot and a novel robotic belt grinding workcell are forwarded, and their features are briefly introduced. An open and object-oriented off-line programming system is developed for this robotic belt grinding system. The parameters of the trimmed surface are read from the initial graphics exchange specification (IGES) file of the CAD model of the workpiece. The deBoor-Cox basis function is used to sample the grinding target with local contact frame on the workpiece. The numerical formula of inverse kinematics is set up based on Newton's iterative procedure, to calculate the grinding robot configurations corresponding to the grinding targets. After the grinding path is obtained, the OLP system turns to be more effective than the teach-by-showing system. In order to improve the grinding workspace, an optimization algorithm for dynamic tool frame is proposed and performed on the special robotic belt grinding system. The initial tool frame and the interval of neighboring tool frames are defined as the preparation of the algorithm. An optimized tool local frame can be selected to grind the complex surface for a maximum dexterity index of the robot. Under the optimization algorithm, a simulation of grinding a vane is included and comparison of grinding workspace is done before and after the tool frame optimization. By the algorithm, the grinding workspace can be enlarged. Moreover the dynamic tool frame can be considered to add one degree-of-freedom to the grinding kinematical chain, which provides the theoretical support for the improvement of robotic dexterity for the complex surface grinding.
基金the National Natural Science Foundation of China (Nos. 41075053 and 41275016)
文摘In order to further understand the land surface processes over the northern Tibetan Plateau, this study produced an off-line simulated examination at the Bujiao site on the northern Tibetan Plateau from June 2002 to April 2004, using the Noah Land Surface Model (Noah LSM) and observed data from the CAMP/Tibet experiment. The observed data were neces- sarily corrected and the number of soil layers in the Noah LSM was changed from 4 to 10 to enable this off-line simulation and analysis. The main conclusions are as follows: the Noah LSM performed well on the northern Tibetan Plateau. The simulated net radiation, upward longwave radiation, and upward shortwave radiation demonstrated the same remarkable annual and seasonal variation as the observed data, especially the upward longwave radiation. The simulated soil temperatures were acceptably close to the observed temperatures, especially in the shallow soil layers. The simulated freezing and melting processes were shown to start from the surface soil layer and spread down to the deep soil layers, but they took longer than the observed processes. However, Noah LSM did not adequately simulate the soil moisture. Therefore, additional high-quality, long-term observations of land surface-atmosphere processes over the Tibetan Plateau will be a key factor in proper adiustments of the model parameters in the future.
文摘Scanning Mobility Particle Sizer (SMPS) spectrometers are subject to several restrictions when a radioactive source is employed to bring the aerosol to a steady-state charge distribution. An alternative solution, commercially available, is represented by the soft X-ray neutralizer. The present study investigates the outcome of a combination of a Grimm SMPS, which employs a 241Am radioactive source, with the soft X-ray advanced aerosol neutralizer (TSI model 3087). To date, the latter device has been interfaced only with TSI’s Electrostatic Classifiers. Particle size distribution of sodium chloride aerosol was measured with both neutralizers and it was found that the particle number concentration agreed to be within 9% for the 10 - 700 nm range. This difference mainly corresponds to the bias reported by TSI, when the X-ray device is mounted on a TSI spectrometer. It was concluded that the X-ray neutralizer could be usefully employed, as a standalone device, in combination with Grimm Electrostatic Classifiers.
文摘Segmentation of cursive text has been one of the major problems in Arabic writing. The problem is the shape of the letter which is context sensitive, depending on it’s location within a word. Many text recognition systems recognize text imagery at the character level and assemble words from the recognized characters. Unfortunately this approach does not work with Arabic text. In this paper we describe a new approach to segment Arabic text imagery at a word level, without analyzing individual characters. This approach avoids the problem of individual characters segmentation, and can overcome local errors in character recognition.
基金Funded by Anhui Provincial Natural Science Foundation of China(GFKJ2015B002)Quality Engineering Project of Anhui province(2014zy122)
文摘A study of the interference simulation based on robot welding of the radar pedestal was carried out by using the KUKA Sim Pro simulation software and off-line program technology. Compared with the actual robot welding process, it was found that the trajectory of the simulated robot welding process in line with that recorded in the actual welding process, and the actual limit and interference appeared at the same place as the simulation process. There was no interference phenomenon on the outside weld-seam; on the internal weld-seam, especially on the weld-joint of support plate connected to the cylinder, a phenomenon of interference appeared. It was helpful to use the simulation method to guide the actual robot welding so as to protect robot from impacting and reduce the weld defects.
文摘Thick walled curve welding are usually joined by multi-layer and multi-pass welding, which quality and efficiency could be improved by off-line programming of robot welding. However, the precision of off-line programming welding path was decreased due to the deviation between the off-line planned welding path and the actual welding path. A path planning algorithm and a path compensation algorithm of multi-layer and multi-pass curve welding seam for off-line programming of robot welding are developed in this paper. Experimental results show that the robot off-line programming improves the welding efftcieney and precision for thick walled curve welding seam.