期刊文献+
共找到455篇文章
< 1 2 23 >
每页显示 20 50 100
OffSig-SinGAN: A Deep Learning-Based Image Augmentation Model for Offline Signature Verification 被引量:1
1
作者 M.Muzaffar Hameed Rodina Ahmad +2 位作者 Laiha Mat Kiah Ghulam Murtaza Noman Mazhar 《Computers, Materials & Continua》 SCIE EI 2023年第7期1267-1289,共23页
Offline signature verification(OfSV)is essential in preventing the falsification of documents.Deep learning(DL)based OfSVs require a high number of signature images to attain acceptable performance.However,a limited n... Offline signature verification(OfSV)is essential in preventing the falsification of documents.Deep learning(DL)based OfSVs require a high number of signature images to attain acceptable performance.However,a limited number of signature samples are available to train these models in a real-world scenario.Several researchers have proposed models to augment new signature images by applying various transformations.Others,on the other hand,have used human neuromotor and cognitive-inspired augmentation models to address the demand for more signature samples.Hence,augmenting a sufficient number of signatures with variations is still a challenging task.This study proposed OffSig-SinGAN:a deep learning-based image augmentation model to address the limited number of signatures problem on offline signature verification.The proposed model is capable of augmenting better quality signatures with diversity from a single signature image only.It is empirically evaluated on widely used public datasets;GPDSsyntheticSignature.The quality of augmented signature images is assessed using four metrics like pixel-by-pixel difference,peak signal-to-noise ratio(PSNR),structural similarity index measure(SSIM),and frechet inception distance(FID).Furthermore,various experiments were organised to evaluate the proposed image augmentation model’s performance on selected DL-based OfSV systems and to prove whether it helped to improve the verification accuracy rate.Experiment results showed that the proposed augmentation model performed better on the GPDSsyntheticSignature dataset than other augmentation methods.The improved verification accuracy rate of the selected DL-based OfSV system proved the effectiveness of the proposed augmentation model. 展开更多
关键词 Signature forgery detection offline signature verification deep learning image augmentation generative adversarial networks
下载PDF
Boundary Data Augmentation for Offline Reinforcement Learning
2
作者 SHEN Jiahao JIANG Ke TAN Xiaoyang 《ZTE Communications》 2023年第3期29-36,共8页
Offline reinforcement learning(ORL)aims to learn a rational agent purely from behavior data without any online interaction.One of the major challenges encountered in ORL is the problem of distribution shift,i.e.,the m... Offline reinforcement learning(ORL)aims to learn a rational agent purely from behavior data without any online interaction.One of the major challenges encountered in ORL is the problem of distribution shift,i.e.,the mismatch between the knowledge of the learned policy and the reality of the underlying environment.Recent works usually handle this in a too pessimistic manner to avoid out-of-distribution(OOD)queries as much as possible,but this can influence the robustness of the agents at unseen states.In this paper,we propose a simple but effective method to address this issue.The key idea of our method is to enhance the robustness of the new policy learned offline by weakening its confidence in highly uncertain regions,and we propose to find those regions by simulating them with modified Generative Adversarial Nets(GAN)such that the generated data not only follow the same distribution with the old experience but are very difficult to deal with by themselves,with regard to the behavior policy or some other reference policy.We then use this information to regularize the ORL algorithm to penalize the overconfidence behavior in these regions.Extensive experiments on several publicly available offline RL benchmarks demonstrate the feasibility and effectiveness of the proposed method. 展开更多
关键词 offline reinforcement learning out‐of‐distribution state ROBUSTNESS UNCERTAINTY
下载PDF
Integration of“Learning to Strengthen the Country”and“Offline Teaching”Concepts in the“Curriculum Ideology and Politics”Education among Graduate Students 被引量:1
3
作者 Qi Zou Li Fan Yi Ren 《Journal of Contemporary Educational Research》 2021年第5期68-71,共4页
Since the socialism with Chinese characteristics has entered this new era,the“curriculum ideology and politics”concept has become one of the innovative achievements in the reformation of ideological and political ed... Since the socialism with Chinese characteristics has entered this new era,the“curriculum ideology and politics”concept has become one of the innovative achievements in the reformation of ideological and political education courses in colleges as well as universities.Based on the emphasis of“curriculum ideology and politics”among graduate students and the influence of the“learning to strengthen the country”concept,this article analyzes universities in regard to the curriculum settings,faculties,and their graduate students.It also explores the“curriculum ideology and politics”concept in consideration of the ontology of teaching,school education,social influence,etc.,and propose practical and extendable countermeasures. 展开更多
关键词 learning to strengthen the country offline teaching Curriculum ideology and politics
下载PDF
Comparison of Students Academic Performance in Mathematics Between Online and Offline Learning
4
作者 Serkan Kaymak Aliyeva Kalamkas 《Economics World》 2021年第4期173-177,共5页
The coronavirus has affected many areas of life,especially in the field of education.With the beginning of the Pandemic,the transition to online learning began,which affected the development of students and teachers i... The coronavirus has affected many areas of life,especially in the field of education.With the beginning of the Pandemic,the transition to online learning began,which affected the development of students and teachers in terms of using innovative technologies and programs,such as Zoom,Webex,Discord,Google Meet,Moodle,EDX,Coursera,www.examus.network,etc.In this regard,many teachers are wondering whether the online method of teaching is as effective as the offline method.In this article,we focused on finding out whether there is a significant difference in student performance between online and offline modes of learning in the study of mathematics.58 students were in a group where they studied online and 58 students were in a group where they studied offline.The study involved first-year college students of Jambyl Innovative Higher College(JICH)in Taraz,Kazakhstan.The final control work was carried out at the end of week 18,which tested all areas covered by the topic in both groups.The average scores of students studying offline were compared with the average of students studying online.To avoid confusion,the researchers also conducted and analyzed an independent t-test.The results showed that there is a significant difference in the academic performance of students who study online and offline.The offline teaching method has proven to be more effective for improving students’understanding and comprehension of mathematics topics. 展开更多
关键词 online learning offline learning achievement in mathematics
下载PDF
Deep reinforcement learning based multi-level dynamic reconfiguration for urban distribution network:a cloud-edge collaboration architecture 被引量:1
5
作者 Siyuan Jiang Hongjun Gao +2 位作者 Xiaohui Wang Junyong Liu Kunyu Zuo 《Global Energy Interconnection》 EI CAS CSCD 2023年第1期1-14,共14页
With the construction of the power Internet of Things(IoT),communication between smart devices in urban distribution networks has been gradually moving towards high speed,high compatibility,and low latency,which provi... With the construction of the power Internet of Things(IoT),communication between smart devices in urban distribution networks has been gradually moving towards high speed,high compatibility,and low latency,which provides reliable support for reconfiguration optimization in urban distribution networks.Thus,this study proposed a deep reinforcement learning based multi-level dynamic reconfiguration method for urban distribution networks in a cloud-edge collaboration architecture to obtain a real-time optimal multi-level dynamic reconfiguration solution.First,the multi-level dynamic reconfiguration method was discussed,which included feeder-,transformer-,and substation-levels.Subsequently,the multi-agent system was combined with the cloud-edge collaboration architecture to build a deep reinforcement learning model for multi-level dynamic reconfiguration in an urban distribution network.The cloud-edge collaboration architecture can effectively support the multi-agent system to conduct“centralized training and decentralized execution”operation modes and improve the learning efficiency of the model.Thereafter,for a multi-agent system,this study adopted a combination of offline and online learning to endow the model with the ability to realize automatic optimization and updation of the strategy.In the offline learning phase,a Q-learning-based multi-agent conservative Q-learning(MACQL)algorithm was proposed to stabilize the learning results and reduce the risk of the next online learning phase.In the online learning phase,a multi-agent deep deterministic policy gradient(MADDPG)algorithm based on policy gradients was proposed to explore the action space and update the experience pool.Finally,the effectiveness of the proposed method was verified through a simulation analysis of a real-world 445-node system. 展开更多
关键词 Cloud-edge collaboration architecture Multi-agent deep reinforcement learning Multi-level dynamic reconfiguration offline learning Online learning
下载PDF
A Practical Reinforcement Learning Framework for Automatic Radar Detection
6
作者 YU Junpeng CHEN Yiyu 《ZTE Communications》 2023年第3期22-28,共7页
At present,the parameters of radar detection rely heavily on manual adjustment and empirical knowledge,resulting in low automation.Traditional manual adjustment methods cannot meet the requirements of modern radars fo... At present,the parameters of radar detection rely heavily on manual adjustment and empirical knowledge,resulting in low automation.Traditional manual adjustment methods cannot meet the requirements of modern radars for high efficiency,high precision,and high automation.Therefore,it is necessary to explore a new intelligent radar control learning framework and technology to improve the capability and automation of radar detection.Reinforcement learning is popular in decision task learning,but the shortage of samples in radar control tasks makes it difficult to meet the requirements of reinforcement learning.To address the above issues,we propose a practical radar operation reinforcement learning framework,and integrate offline reinforcement learning and meta-reinforcement learning methods to alleviate the sample requirements of reinforcement learning.Experimental results show that our method can automatically perform as humans in radar detection with real-world settings,thereby promoting the practical application of reinforcement learning in radar operation. 展开更多
关键词 meta-reinforcement learning radar detection reinforcement learning offline reinforcement learning
下载PDF
Offline Reinforcement Learning with Constrained Hybrid Action Implicit Representation Towards Wargaming Decision-Making
7
作者 Liwei Dong Ni Li +1 位作者 Guanghong Gong Xin Lin 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第5期1422-1440,共19页
Reinforcement Learning(RL)has emerged as a promising data-driven solution for wargaming decision-making.However,two domain challenges still exist:(1)dealing with discrete-continuous hybrid wargaming control and(2)acce... Reinforcement Learning(RL)has emerged as a promising data-driven solution for wargaming decision-making.However,two domain challenges still exist:(1)dealing with discrete-continuous hybrid wargaming control and(2)accelerating RL deployment with rich offline data.Existing RL methods fail to handle these two issues simultaneously,thereby we propose a novel offline RL method targeting hybrid action space.A new constrained action representation technique is developed to build a bidirectional mapping between the original hybrid action space and a latent space in a semantically consistent way.This allows learning a continuous latent policy with offline RL with better exploration feasibility and scalability and reconstructing it back to a needed hybrid policy.Critically,a novel offline RL optimization objective with adaptively adjusted constraints is designed to balance the alleviation and generalization of out-of-distribution actions.Our method demonstrates superior performance and generality across different tasks,particularly in typical realistic wargaming scenarios. 展开更多
关键词 offline Reinforcement learning(RL) WARGAMING DECISION-MAKING hybrid action space
原文传递
基于在线开放课程平台的高职英语“online+offline”学习方式研究 被引量:1
8
作者 潘丽萍 侯松 《南通航运职业技术学院学报》 2018年第1期88-92,共5页
随着教育信息化理念指导各学科教学的不断深入,有关信息化课堂教学中学生学习方式的研究成为不可忽视的关注点。基于在线开放课程信息化平台对英语教学及学习的支持,以建构主义学习理论为指导,探讨现代信息环境下英语主要教学环节与学... 随着教育信息化理念指导各学科教学的不断深入,有关信息化课堂教学中学生学习方式的研究成为不可忽视的关注点。基于在线开放课程信息化平台对英语教学及学习的支持,以建构主义学习理论为指导,探讨现代信息环境下英语主要教学环节与学习方式的关系,阐释通过自主学习、合作学习等方式在英语"online+offline"课堂教学中有效开展学习活动,提升学生学习效率,为英语课堂教学改革提供参考。 展开更多
关键词 在线开放课程平台 高职英语课堂 “online+offline”学习方式
下载PDF
基于U-Learning和O2O的高职教育智慧课堂的探讨 被引量:1
9
作者 孙晓辉 《装备制造技术》 2021年第1期90-92,共3页
针对传统学历教育和在线网络教学存在的问题,以及时代赋予的机遇和挑战,借鉴新时代愈加主流的U-Learning泛在学习方法和O2O线上-线下双向互动机制,借助信息化与网络技术,对基于U-Learning和O2O的高职教育智慧课堂的教学机制、教学体系... 针对传统学历教育和在线网络教学存在的问题,以及时代赋予的机遇和挑战,借鉴新时代愈加主流的U-Learning泛在学习方法和O2O线上-线下双向互动机制,借助信息化与网络技术,对基于U-Learning和O2O的高职教育智慧课堂的教学机制、教学体系、教学方法等内容进行分析,得出了融入了U-Learning和O2O的高职教育智慧课堂的先进机制与优点,为构建起一种以学生为中心,以培养学生发掘、组织、利用与课程相关的线上线下资源随时、随地利用手边的科技工具进行有效学习并解决问题的能力为目标的高职教育智慧课堂创新教学模式。 展开更多
关键词 泛在学习(U-learning) 线上线下(O2O) 高职教育 智慧课堂
下载PDF
Offline Urdu Nastaleeq Optical Character Recognition Based on Stacked Denoising Autoencoder 被引量:2
10
作者 Ibrar Ahmad Xiaojie Wang +1 位作者 Ruifan Li Shahid Rasheed 《China Communications》 SCIE CSCD 2017年第1期146-157,共12页
Offline Urdu Nastaleeq text recognition has long been a serious problem due to its very cursive nature. In order to get rid of the character segmentation problems, many researchers are shifting focus towards segmentat... Offline Urdu Nastaleeq text recognition has long been a serious problem due to its very cursive nature. In order to get rid of the character segmentation problems, many researchers are shifting focus towards segmentation free ligature based recognition approaches. Majority of the prevalent ligature based recognition systems heavily rely on hand-engineered feature extraction techniques. However, such techniques are more error prone and may often lead to a loss of useful information that might hardly be captured later by any manual features. Most of the prevalent Urdu Nastaleeq test recognition was trained and tested on small sets. This paper proposes the use of stacked denoising autoencoder for automatic feature extraction directly from raw pixel values of ligature images. Such deep learning networks have not been applied for the recognition of Urdu text thus far. Different stacked denoising autoencoders have been trained on 178573 ligatures with 3732 classes from un-degraded(noise free) UPTI(Urdu Printed Text Image) data set. Subsequently, trained networks are validated and tested on degraded versions of UPTI data set. The experimental results demonstrate accuracies in range of 93% to 96% which are better than the existing Urdu OCR systems for such large dataset of ligatures. 展开更多
关键词 offline printed ligature recognition urdu nastaleeq denoising autoencoder deep learning classification
下载PDF
OSCAR:OOD State-Conservative Offline Reinforcement Learning for Sequential Decision Making
11
作者 Yi Ma Chao Wang +4 位作者 Chen Chen Jinyi Liu Zhaopeng Meng Yan Zheng Jianye Hao 《CAAI Artificial Intelligence Research》 2023年第1期91-101,共11页
Offline reinforcement learning(RL)is a data-driven learning paradigm for sequential decision making.Mitigating the overestimation of values originating from out-of-distribution(OOD)states induced by the distribution s... Offline reinforcement learning(RL)is a data-driven learning paradigm for sequential decision making.Mitigating the overestimation of values originating from out-of-distribution(OOD)states induced by the distribution shift between the learning policy and the previously-collected offline dataset lies at the core of offline RL.To tackle this problem,some methods underestimate the values of states given by learned dynamics models or state-action pairs with actions sampled from policies different from the behavior policy.However,since these generated states or state-action pairs are not guaranteed to be OOD,staying conservative on them may adversely affect the in-distribution ones.In this paper,we propose an OOD state-conservative offline RL method(OSCAR),which aims to address the limitation by explicitly generating reliable OOD states that are located near the manifold of the offline dataset,and then design a conservative policy evaluation approach that combines the vanilla Bellman error with a regularization term that only underestimates the values of these generated OOD states.In this way,we can prevent the value errors of OOD states from propagating to in-distribution states through value bootstrapping and policy improvement.We also theoretically prove that the proposed conservative policy evaluation approach guarantees to underestimate the values of OOD states.OSCAR along with several strong baselines is evaluated on the offline decision-making benchmarks D4RL and autonomous driving benchmark SMARTS.Experimental results show that OSCAR outperforms the baselines on a large portion of the benchmarks and attains the highest average return,substantially outperforming existing offline RL methods. 展开更多
关键词 offline reinforcement learning out-of-distribution decision making
原文传递
线上线下混合式教学实施时间长短对《儿科学》学习效果的影响 被引量:1
12
作者 章虎 孙妍 +2 位作者 刘琦 陈益平 张海邻 《温州医科大学学报》 CAS 2024年第1期81-86,共6页
目的:探索线上线下混合式教学模式开展时间长短对《儿科学》学习效果的影响。方法:选取温州医科大学本科四年级学生共153人纳入研究,研究组59人,对照组94人。研究组学生第1年接受传统授课模式,后3年接受线上线下混合式授课。对照组前3... 目的:探索线上线下混合式教学模式开展时间长短对《儿科学》学习效果的影响。方法:选取温州医科大学本科四年级学生共153人纳入研究,研究组59人,对照组94人。研究组学生第1年接受传统授课模式,后3年接受线上线下混合式授课。对照组前3年接受传统授课,第4年接受线上线下混合式的授课。以问卷调查形式搜集资料,包括对上课形式的兴趣、记忆能力、搜集信息能力等方面的自我评价,比较两组学生能力提升的差异,并比较两组学生随堂答题分数的差异。结果:对照组学生喜欢混合式教学形式更多(Z=2.152,P<0.05),且有更多学生对医学知识兴趣有提高(Z=2.117,P<0.05)。与对照组相比,研究组有更多学生搜集信息能力得到提升(Z=2.258,P<0.05),研究组随堂答题分数更高[60(50,70) vs.60(40,60),P=0.001]。在知识点理解深度、记忆能力、思考能力、解决案例能力、沟通合作能力、课堂发言能力提升方面,两组学生比较差异无统计学意义(P>0.05)。结论:在儿科教学中,线上线下混合式教学能提升学生的学习能力。学生接触该教学模式时间越长,搜集信息能力提升更多,且答题分数更高。 展开更多
关键词 混合式教学 线上线下 儿科学 学习效果 学习能力
下载PDF
线上线下融合背景下高职学生自主学习模式研究 被引量:1
13
作者 何健 《继续教育研究》 2024年第3期63-67,共5页
随着互联网和信息技术的快速发展,线上线下融合的教学模式在高职教育中得到了广泛应用,而自主学习可以理解为学习方法和学习态度的表现形式,不仅能够提升学生的学习效果,还可以不断增强学生的学习能力。在线上线下融合背景下,高职学生... 随着互联网和信息技术的快速发展,线上线下融合的教学模式在高职教育中得到了广泛应用,而自主学习可以理解为学习方法和学习态度的表现形式,不仅能够提升学生的学习效果,还可以不断增强学生的学习能力。在线上线下融合背景下,高职学生在自主学习模式方面表现出较高的自觉和参与度,自主学习环境的构建和自主学习资源的选择和开发对于学生的自主学习能力的提高起到了积极的作用。基于此,针对线上线下融合背景下高职学生自主学习模式进行分析,并提出了一些改进和优化的建议,包括加强学生自主学习能力培养、提供更多的指导和支持、加强线上线下教学环节的融合等。这些建议有助于提高高职学生的学习效果和学习质量,为高职教育的发展和改革提供参考。 展开更多
关键词 线上线下 高职教育 高职学生 自主学习
下载PDF
“互联网+”背景下普通高校教学改革与探索
14
作者 胡鸿志 刘涛 +2 位作者 管芳 苏海涛 徐翠锋 《高教学刊》 2024年第22期132-135,共4页
信息时代的知识体系由传统静态层级结构转变为动态网络生态,新知识观以动态思维看待知识要素的发展变化,彰显互联网时代开展线上教学的必要性,但碎片化软知识也带来难以建构知识体系和影响学习者认知等学习障碍。“因材适学”的线上线... 信息时代的知识体系由传统静态层级结构转变为动态网络生态,新知识观以动态思维看待知识要素的发展变化,彰显互联网时代开展线上教学的必要性,但碎片化软知识也带来难以建构知识体系和影响学习者认知等学习障碍。“因材适学”的线上线下混合教学模式,贯通理论教学、实践教学、学科竞赛和创新实践等环节,为“互联网+”背景下普通地方高校大学生培养进行有益的探索和实践。 展开更多
关键词 新知识观 碎片化学习 因材适学 互联网+ 线上线下混合教学
下载PDF
基于在线学习平台问卷调查的混合式教学在妇科教学中的应用
15
作者 孙聪聪 张英姿 +3 位作者 张晓敏 张小雪 周超 万金良 《中国继续医学教育》 2024年第8期80-84,共5页
目的观察基于在线学习平台问卷调查的混合式教学对妇科理论教学效果的影响。方法选取2021年7月—2022年7月滨州医学院2018级全日制本科临床医学专业学生113名作为研究对象,随机分为研究组57名和对照组56名。研究组采用在线学习平台调查... 目的观察基于在线学习平台问卷调查的混合式教学对妇科理论教学效果的影响。方法选取2021年7月—2022年7月滨州医学院2018级全日制本科临床医学专业学生113名作为研究对象,随机分为研究组57名和对照组56名。研究组采用在线学习平台调查问卷与线下教学相结合的教学模式,对照组采用传统教学模式,比较2组学生课堂表现、课后知识测评成绩和满意度问卷调查。结果研究组测评成绩(86.61±8.37)分,对照组成绩(82.07±12.25)分,研究组高于对照组,差异有统计学意义(t=2.304,P<0.05),满意度问卷调查结果显示研究组教学方法更得到学生的肯定(P<0.05)。结论基于慕课堂授课前后问卷调查混合教学模式适合当前教学形势,能有效提高学生学习主动性,提高教学质量。 展开更多
关键词 在线学习平台 问卷调查 线下教学 混合式教学 学习动机 主动性
下载PDF
系统解剖学线上线下混合式教学应用研究
16
作者 孙成 刘艳翠 +2 位作者 赵微 李文媛 孙平 《中国高等医学教育》 2024年第6期83-85,共3页
作为本科院校医学专业重要课程,系统解剖学主要研究内容包括人体形态、结构以及基本功能等,是医学专业基础必修课。随着现代互联网信息技术的发展,线上线下混合式教学在系统解剖学教学中得以应用。研究介绍了线上线下混合式教学的特点... 作为本科院校医学专业重要课程,系统解剖学主要研究内容包括人体形态、结构以及基本功能等,是医学专业基础必修课。随着现代互联网信息技术的发展,线上线下混合式教学在系统解剖学教学中得以应用。研究介绍了线上线下混合式教学的特点与优势,分析了系统解剖学教学存在的问题,并提出了线上线下混合式教学在系统解剖学中的实施策略,评价了其教学效果,以期为系统解剖学教学提供参考。 展开更多
关键词 系统解剖学 线上线下 混合式教学 应用 教学效果
下载PDF
转化式学习理念融入线上线下生物化学实验教学模式的探索
17
作者 师岩 张春晶 +5 位作者 李淑艳 贾迪 杨超 武爽 赵正林 宁小美 《中国高等医学教育》 2024年第3期129-131,共3页
医学基础课生物化学的实验课是理论知识学习和临床应用的重要支撑。为满足新时代应用型医学人才培养的需要,教学设计中融入转化式学习理念,利用线上线下教学有机结合的方式将实验课程体系进行优化整合。课前线上推送课件和视频资源,学... 医学基础课生物化学的实验课是理论知识学习和临床应用的重要支撑。为满足新时代应用型医学人才培养的需要,教学设计中融入转化式学习理念,利用线上线下教学有机结合的方式将实验课程体系进行优化整合。课前线上推送课件和视频资源,学生在虚拟仿真实验云平台自主学习,查阅相关文献,充分准备后进入线下实验操作,在小组合作中教与学共进,通过考核评价检测学生学习效果。实验课程线上线下教学中采用转化式学习理念,能激发学生对理论知识的学习兴趣,增强学生自主学习能力,培养实践操作技能和科研思维,探索出一种更适用于应用型医学本科高校实验教学的教育教学方法。 展开更多
关键词 转化式学习 线上线下教学 生物化学 实验课程
下载PDF
中澳TAFE课程线上线下混合式教学设计及模式构建研究
18
作者 谢盛良 陈杨 《未来与发展》 2024年第8期89-94,共6页
通过对本校中澳合作的TAFE课程教学的研究,本研究依托超星平台和MOODLE等网络教学平台,分别从课前、课中、课后3个阶段展开探讨线上线下融合的TAFE课程教学活动设计方案,并通过线上线下混合式教学改革实践,尤其是海外线上教学进行实践检... 通过对本校中澳合作的TAFE课程教学的研究,本研究依托超星平台和MOODLE等网络教学平台,分别从课前、课中、课后3个阶段展开探讨线上线下融合的TAFE课程教学活动设计方案,并通过线上线下混合式教学改革实践,尤其是海外线上教学进行实践检验,探索构建中澳TAFE课程线上与线下融合的混合式教学模式,以提高TAFE课程教学质量,确保中澳合作国际化办学成效。 展开更多
关键词 中澳 TAFE课程 线上线下 混合式教学
下载PDF
线下线上混合式教学模式在机械原理教学中的应用
19
作者 韩霞 万霖 +5 位作者 王宏立 李庆达 李衣菲 张吉军 白海超 兰珊 《农机使用与维修》 2024年第6期143-146,共4页
为适应工程教育认证,切实提高机械原理课程的学习效果,机械原理课程教学方法和教学内容等需要进行相应教学改革。课题组以成果导向为指导理念,优化教学内容;以“学习通”、腾讯会议、QQ群为平台,开展线下线上混合式教学模式,以机械原理... 为适应工程教育认证,切实提高机械原理课程的学习效果,机械原理课程教学方法和教学内容等需要进行相应教学改革。课题组以成果导向为指导理念,优化教学内容;以“学习通”、腾讯会议、QQ群为平台,开展线下线上混合式教学模式,以机械原理“自由度计算基本公式”专题为例开展教学设计,探索线下线上混合教学模式的应用。结果表明,混合式教学模式能有效增加教学内容,激发学生自主学习的兴趣和能力,达到“童蒙求我”的学习效果。 展开更多
关键词 机械原理 线下线上 混合教学模式
下载PDF
混合式教学管理策略的探索
20
作者 赵鸿雁 余静 +1 位作者 黄光 李磊 《教育教学论坛》 2024年第23期105-108,共4页
为提升学生的参与度和积极性,南京医科大学卫生检验与检疫专业自新冠病毒感染以来,在“以学生为中心”的教育理念指导下,经过多年探索实践,在“水质理化检验”专业课教学过程中逐步建立起一套多维管理方法。具体是依托超星泛雅学习平台... 为提升学生的参与度和积极性,南京医科大学卫生检验与检疫专业自新冠病毒感染以来,在“以学生为中心”的教育理念指导下,经过多年探索实践,在“水质理化检验”专业课教学过程中逐步建立起一套多维管理方法。具体是依托超星泛雅学习平台,整合教学资源,改进教学过程,注重交互反馈,强化过程控制,重置教学评价,构建起“五维管理”的线上线下混合教学模式。新的教学管理模式加强了教师对课堂的引导作用,提高了学生学习的自主性,为混合式教学向本专业乃至全院专业课推广提供了很好的参考。 展开更多
关键词 以学生为中心 混合式教学 超星学习平台 线上线下 教学管理
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部