Amplitudes have been found to be a function of incident angle and offset. Hence data required to test for amplitude variation with angle or offset needs to have its amplitudes for all offsets preserved and not stacked...Amplitudes have been found to be a function of incident angle and offset. Hence data required to test for amplitude variation with angle or offset needs to have its amplitudes for all offsets preserved and not stacked. Amplitude Variation with Offset (AVO)/Amplitude Variation with Angle (AVA) is necessary to account for information in the offset/angle parameter (mode converted S-wave and P-wave velocities). Since amplitudes are a function of the converted S- and P-waves, it is important to investigate the dependence of amplitudes on the elastic (P- and S-waves) parameters from the seismic data. By modelling these effects for different reservoir fluids via fluid substitution, various AVO geobody classes present along the well and in the entire seismic cube can be observed. AVO analysis was performed on one test well (Well_1) and 3D pre-stack angle gathers from the Tano Basin. The analysis involves creating a synthetic model to infer the effect of offset scaling techniques on amplitude responses in the Tano basin as compared to the effect of unscaled seismic data. The spectral balance process was performed to match the amplitude spectra of all angle stacks to that of the mid (26°) stack on the test lines. The process had an effect primarily on the far (34° - 40°) stacks. The frequency content of these stacks slightly increased to match that of the near and mid stacks. In offset scaling process, the root mean square (RMS) amplitude comparison between the synthetic and seismic suggests that the amplitude of the far traces should be reduced relative to the nears by up to 16%. However, the exact scaler values depend on the time window considered. This suggests that the amplitude scaling with offset delivered from seismic processing is only approximately correct and needs to be checked with well synthetics and adjusted accordingly prior to use for AVO studies. The AVO attribute volumes generated were better at resolving anomalies on spectrally balanced and offset scaled data than data delivered from conventional processing. A typical class II AVO anomaly is seen along the test well from the cross-plot analysis and AVO attribute cube which indicates an oil filled reservoir.展开更多
An important component of any CO_2 sequestration project is seismic monitoring for tracking changes in subsurface physical properties,such as velocity and density.Different reservoirs have different amplitude variatio...An important component of any CO_2 sequestration project is seismic monitoring for tracking changes in subsurface physical properties,such as velocity and density.Different reservoirs have different amplitude variation with offset(AVO) responses,which can define underground conditions. In the present paper we investigate walkaway vertical seismic profile(VSP) AVO response to CO_2 injection at the Ketzin site,the first European onshore CO_2 sequestration pilot study dealing with research on geological storage of CO_2.First,we performed rock physics analysis to evaluate the effect of injected CO_2 on seismic velocity using the Biot-Gassmann equation.On the basis of this model,the seismic response for different CO_2 injection saturation was studied using ray tracing modeling.We then created synthetic walkaway VSP data,which we then processed.In contrast,synthetic seismic traces were created from borehole data.Finally,we found that the amplitude of CO_2 injected sand layer with different gas saturations were increased with the offset when compared with the original brine target layer.This is the typical classⅢAVO anomaly for gas sand layer.The AVO responses matched the synthetic seismic traces very well.Therefore,walkaway VSP AVO response can monitor CO_2 distribution in the Ketzin area.展开更多
Abstract Accurate simulation of seismic wave propaga- tion in complex geological structures is of particular interest nowadays. However conventional methods may fail to simulate realistic wavefields in environments wi...Abstract Accurate simulation of seismic wave propaga- tion in complex geological structures is of particular interest nowadays. However conventional methods may fail to simulate realistic wavefields in environments with great and rapid structural changes, due for instance to the presence of shadow zones, diffractions and/or edge effects. Different methods, developed to improve seismic model- ing, are typically tested on synthetic configurations against analytical solutions for simple canonical problems or ref- erence methods, or via direct comparison with real data acquired in situ. Such approaches have limitations,especially if the propagation occurs in a complex envi- ronment with strong-contrast reflectors and surface irreg- ularities, as it can be difficult to determine the method which gives the best approximation of the "real" solution, or to interpret the results obtained without an a priori knowledge of the geologic environment. An alternative approach for seismics consists in comparing the synthetic data with high-quality data collected in laboratory experi- ments under controlled conditions for a known configuration. In contrast with numerical experiments, laboratory data possess many of the characteristics of field data, as real waves propagate through models with no numerical approximations. We thus present a comparison of laboratory-scaled measurements of 3D zero-offset wave reflection of broadband pulses from a strong topographic environment immersed in a water tank with numerical data simulated by means of a spectral-element method and a discretized Kirchhoff integral method. The results indicate a good quantitative fit in terms of time arrivals and acceptable fit in amplitudes for all datasets.展开更多
According to revised Cailikefu’s rolling shear force formula,motion path equation of spatial seven-bar path is built,and mechanical model,with such new structural features as negative offset,is thus successfully esta...According to revised Cailikefu’s rolling shear force formula,motion path equation of spatial seven-bar path is built,and mechanical model,with such new structural features as negative offset,is thus successfully established for 2 800 mm heavy shear of some Iron&Steel Company. Shear force and bar force of steel plate,before and after adoption of negative offset structure,are analyzed,as well as horizontal force component of mechanism that influences pure rolling shear and back-wall push force that keeps blade clearance. The discovery is that back-wall push force could be kept large enough at rolling start-up (i.e. the time that the maximum rolling shear produces),meanwhile,back-wall push force is the most approximate to side forces with adoption of 60 mm-100 mm offset. Theoretical results and on-site shear quality both indicate that new structural features such as negative offset plays an important role in ensuring pure rolling shear and keeping blade clearance constant,which provide an effective means to improve quality of steel plate.展开更多
文摘Amplitudes have been found to be a function of incident angle and offset. Hence data required to test for amplitude variation with angle or offset needs to have its amplitudes for all offsets preserved and not stacked. Amplitude Variation with Offset (AVO)/Amplitude Variation with Angle (AVA) is necessary to account for information in the offset/angle parameter (mode converted S-wave and P-wave velocities). Since amplitudes are a function of the converted S- and P-waves, it is important to investigate the dependence of amplitudes on the elastic (P- and S-waves) parameters from the seismic data. By modelling these effects for different reservoir fluids via fluid substitution, various AVO geobody classes present along the well and in the entire seismic cube can be observed. AVO analysis was performed on one test well (Well_1) and 3D pre-stack angle gathers from the Tano Basin. The analysis involves creating a synthetic model to infer the effect of offset scaling techniques on amplitude responses in the Tano basin as compared to the effect of unscaled seismic data. The spectral balance process was performed to match the amplitude spectra of all angle stacks to that of the mid (26°) stack on the test lines. The process had an effect primarily on the far (34° - 40°) stacks. The frequency content of these stacks slightly increased to match that of the near and mid stacks. In offset scaling process, the root mean square (RMS) amplitude comparison between the synthetic and seismic suggests that the amplitude of the far traces should be reduced relative to the nears by up to 16%. However, the exact scaler values depend on the time window considered. This suggests that the amplitude scaling with offset delivered from seismic processing is only approximately correct and needs to be checked with well synthetics and adjusted accordingly prior to use for AVO studies. The AVO attribute volumes generated were better at resolving anomalies on spectrally balanced and offset scaled data than data delivered from conventional processing. A typical class II AVO anomaly is seen along the test well from the cross-plot analysis and AVO attribute cube which indicates an oil filled reservoir.
基金The European Commission,German Federal Ministry of Education and Research,German Federal Ministry of Economics and Technology as well as Research Institute and Industry are gratefully acknowledged for funding and supporting CO2 Storage by Injection into a Natural Storage Site CO2SINK(Project No.502599)
文摘An important component of any CO_2 sequestration project is seismic monitoring for tracking changes in subsurface physical properties,such as velocity and density.Different reservoirs have different amplitude variation with offset(AVO) responses,which can define underground conditions. In the present paper we investigate walkaway vertical seismic profile(VSP) AVO response to CO_2 injection at the Ketzin site,the first European onshore CO_2 sequestration pilot study dealing with research on geological storage of CO_2.First,we performed rock physics analysis to evaluate the effect of injected CO_2 on seismic velocity using the Biot-Gassmann equation.On the basis of this model,the seismic response for different CO_2 injection saturation was studied using ray tracing modeling.We then created synthetic walkaway VSP data,which we then processed.In contrast,synthetic seismic traces were created from borehole data.Finally,we found that the amplitude of CO_2 injected sand layer with different gas saturations were increased with the offset when compared with the original brine target layer.This is the typical classⅢAVO anomaly for gas sand layer.The AVO responses matched the synthetic seismic traces very well.Therefore,walkaway VSP AVO response can monitor CO_2 distribution in the Ketzin area.
基金the INSIS Institute of the French CNRS,Aix-Marseille Universitythe Carnot Star Institute,the VISTA Projectthe Norwegian Research Council through the ROSE Project for financial support
文摘Abstract Accurate simulation of seismic wave propaga- tion in complex geological structures is of particular interest nowadays. However conventional methods may fail to simulate realistic wavefields in environments with great and rapid structural changes, due for instance to the presence of shadow zones, diffractions and/or edge effects. Different methods, developed to improve seismic model- ing, are typically tested on synthetic configurations against analytical solutions for simple canonical problems or ref- erence methods, or via direct comparison with real data acquired in situ. Such approaches have limitations,especially if the propagation occurs in a complex envi- ronment with strong-contrast reflectors and surface irreg- ularities, as it can be difficult to determine the method which gives the best approximation of the "real" solution, or to interpret the results obtained without an a priori knowledge of the geologic environment. An alternative approach for seismics consists in comparing the synthetic data with high-quality data collected in laboratory experi- ments under controlled conditions for a known configuration. In contrast with numerical experiments, laboratory data possess many of the characteristics of field data, as real waves propagate through models with no numerical approximations. We thus present a comparison of laboratory-scaled measurements of 3D zero-offset wave reflection of broadband pulses from a strong topographic environment immersed in a water tank with numerical data simulated by means of a spectral-element method and a discretized Kirchhoff integral method. The results indicate a good quantitative fit in terms of time arrivals and acceptable fit in amplitudes for all datasets.
基金Supported by the National tenth-five Key Technologies R&D Programme (ZZ01-13A-03-03-04) .
文摘According to revised Cailikefu’s rolling shear force formula,motion path equation of spatial seven-bar path is built,and mechanical model,with such new structural features as negative offset,is thus successfully established for 2 800 mm heavy shear of some Iron&Steel Company. Shear force and bar force of steel plate,before and after adoption of negative offset structure,are analyzed,as well as horizontal force component of mechanism that influences pure rolling shear and back-wall push force that keeps blade clearance. The discovery is that back-wall push force could be kept large enough at rolling start-up (i.e. the time that the maximum rolling shear produces),meanwhile,back-wall push force is the most approximate to side forces with adoption of 60 mm-100 mm offset. Theoretical results and on-site shear quality both indicate that new structural features such as negative offset plays an important role in ensuring pure rolling shear and keeping blade clearance constant,which provide an effective means to improve quality of steel plate.