The main sea water pump is the key equipment for the floating production storage and offloading (FPSO). Affected by some factors such as hull deformation, sea water corrosion, rigid base and pipeline stress, the vib...The main sea water pump is the key equipment for the floating production storage and offloading (FPSO). Affected by some factors such as hull deformation, sea water corrosion, rigid base and pipeline stress, the vibration value of main sea water pump in the horizontal direction is abnormally high and malfunctions usually happen. Therefore, it is essential to make fault diagnosis of main sea water pump, By conventional off-line monitoring and vibration amplitude spectrum analysis, the fault cycle is found and the alarm value and stop value of equipment are set, which is helpful to equipment maintenance and accident prevention.展开更多
Since the development of offshore oil and gas, increased submarine oil and gas pipelines were installed. All the early steel pipes of submarine pipelines depended on importing because of the strict requirements of com...Since the development of offshore oil and gas, increased submarine oil and gas pipelines were installed. All the early steel pipes of submarine pipelines depended on importing because of the strict requirements of comprehensive properties, such as, anti-corrosion, resistance to pressure and so on. To research and develop domes- tic steel pipes used for the submarine pipeline, the Longitudinal-seam Submerged Arc Welded (LSAW) pipes were made of steel plates cut from leveled hot rolled coils by both the JCOE and UOE (the forming process in which the plate like the letter “J”, “C”, “0” or “U” shape, then expansion) forming processes. Furthermore, the mechanical properties of the pipe base metal and weld metal were tested, and the results were in accordance with the corresponding pipe specification API SPEC 5L or DNV- OS-FI01, which showed that domestic LSAW pipes could be used for submarine oil and gas pipelines.展开更多
This paper presents a theoretical method and a finite element method to describe wellhead movement and uncemented casing strength in offshore oil and gas wells.Parameters considered in the theoretical method include o...This paper presents a theoretical method and a finite element method to describe wellhead movement and uncemented casing strength in offshore oil and gas wells.Parameters considered in the theoretical method include operating load during drilling and completion and the temperature field,pressure field and the end effect of pressure during gas production.The finite element method for multistring analysis is developed to simulate random contact between casings.The relevant finite element analysis scheme is also presented according to the actual procedures of drilling,completion and gas production.Finally,field cases are presented and analyzed using the proposed methods.These are four offshore wells in the South China Sea.The calculated wellhead growths during gas production are compared with measured values.The results show that the wellhead subsides during drilling and completion and grows up during gas production.The theoretical and finite element solutions for wellhead growth are in good agreement with measured values and the deviations of calculation are within 10%.The maximum von Mises stress on the uncemented intermediate casing occurs during the running of the oil tube.The maximum von Mises stress on the uncemented production casing,calculated with the theoretical method occurs at removing the blow-out-preventer (BOP) while that calculated with the finite element method occurs at gas production.Finite element solutions for von Mises stress are recommended and the uncemented casings of four wells satisfy strength requirements.展开更多
Multilateral wells promise cost savings to oil and fields as they have the potential to reduce overall drilling distances and minimize the number of slots required for the surface facility managing the well.However,dr...Multilateral wells promise cost savings to oil and fields as they have the potential to reduce overall drilling distances and minimize the number of slots required for the surface facility managing the well.However,drilling a multilateral well does not always increase the flow rate when compared to two single-horizontal wells due to competition in production inside the mother-bore.Here,a holistic approach is proposed to find the optimum balance between single and multilateral wells in an offshore oil development.In so doing,the integrated approach finds the highest Net Present Value(NPV)configuration of the field considering drilling,subsurface,production and financial analysis.The model employs stochastic perturbation and Markov Chain Monte-Carlo methods to solve the global maximising-NPV problem.In addition,a combination of Mixed-Integer Linear Programming(MILP),an improved Dijkstra algorithm and a Levenberg-Marquardt optimiser is proposed to solve the rate allocation problem.With the outcome from this analysis,the model suggests the optimum development including number of multilateral and single horizontal wells that would result in the highest NPV.The results demonstrate the potential for modelling to find the optimal use of petroleum facilities and to assist with planning and decision making.展开更多
-Based on the calculation model for the floating laying of the offshore oil pipeline, this paper analyses in detail the internal force, and deformation of the pipeline under a definite structural form (pipeline and bu...-Based on the calculation model for the floating laying of the offshore oil pipeline, this paper analyses in detail the internal force, and deformation of the pipeline under a definite structural form (pipeline and buoy) and the way of pulling. The obtained results can be used for the buoy deployment, structure design, and the determination of pulling parameters (the pulling force of the cable and its length, etc.), providing an effective analysis method for floating pipeline-laying. A calculation example is given to show the related calculation process and the main results are analyzed and discussed.展开更多
This paper carries out the analysis of mechanics of a grip system of three-key-board hydraulic tongs developed for offshore oil pipe lines which has been successfully used in oil fields in China. The main improvement ...This paper carries out the analysis of mechanics of a grip system of three-key-board hydraulic tongs developed for offshore oil pipe lines which has been successfully used in oil fields in China. The main improvement of this system is that a lever frame structure is used in the structural design, which reduces greatly the stresses of the major components of the oil pipe tongs. Theoretical analysis and numerical calculation based on thirteen basic equations developed Show that the teeth board of the tongs is not easy to slip as frequently happens to other systems and is of higher reliability.展开更多
Since the founding of the ChinaNational Offshore Oil Corporationin 1982, the China offshore oil industryhas parted from closing the country tointernational intercourse and has steadilygone onto the developmental road ...Since the founding of the ChinaNational Offshore Oil Corporationin 1982, the China offshore oil industryhas parted from closing the country tointernational intercourse and has steadilygone onto the developmental road at highspeed and with high efficiency inaccordance with international practice.In the short time of 13 years, relying onthe correlated policy offered by the stateand the intensification of enterprisemanagement, it has built up a large state-owned enterprise of independentmanagement, self-responsibility forprofits and losses, self-accumulation andself-perfection.展开更多
Alang with big drop of oil prices, offshore oil engineering market demand is witnessing profound changes. This brings rare opportunities while huge challenges for Chinese offshore oil engineering enterprises. Chinese ...Alang with big drop of oil prices, offshore oil engineering market demand is witnessing profound changes. This brings rare opportunities while huge challenges for Chinese offshore oil engineering enterprises. Chinese offshore oil engineering enterprises have made rapid development in recent years, but they still have a certain gap with European and American competitors. Only by answering the time's call for developmentof international market and having the courage to participate in international competition could Chinese offshore oil engineering enterprises gnaw strong unceasingly.展开更多
According to Bloomberg on November 12, China Petrochemical Corp., Asia’s biggest ref iner, agreed to buy a 30 percent stake in Galp Energia SGPS SA (GALP)’s Brazilian unit, its second invest- ment in offshore oil fi...According to Bloomberg on November 12, China Petrochemical Corp., Asia’s biggest ref iner, agreed to buy a 30 percent stake in Galp Energia SGPS SA (GALP)’s Brazilian unit, its second invest- ment in offshore oil fields in Latin America’s largest economy in as many years.展开更多
This paper discusses the development of China's oil exploration & drilling equipment, and it focuses mainly on the domestication, industrialization, and standardization of fixed offshore drilling rigs primaril...This paper discusses the development of China's oil exploration & drilling equipment, and it focuses mainly on the domestication, industrialization, and standardization of fixed offshore drilling rigs primarily constructed by CNOOC. Considering the manufacturing of and application of deepwater drilling equipment in China, the authors put forward suggestions regarding industry policies and the standardization of China's offshore engineering equipment.展开更多
Follow-up of environmental impacts is an integral part of the Environmental Impact Assessment (EIA) process, closely related to the effectiveness of the instrument. EIA follow-up has been receiving a lot of interest f...Follow-up of environmental impacts is an integral part of the Environmental Impact Assessment (EIA) process, closely related to the effectiveness of the instrument. EIA follow-up has been receiving a lot of interest from scientists and practitioners, though it is recognized as one of the weakest points of EIA systems globally. Also, EIA follow-up is influenced by the context, mainly in terms of the types of projects or activities and their related impacts on the environment. Therefore, the present paper is focused on the investigation of the follow-up stage applied to the activity of seismic survey coupled with offshore oil & gas exploitation in Brazil. Research was based on a qualitative approach that included document analysis and semi-structured interviews with analysts involved in EIA processes, and sought to generate evidence of effectiveness of the EIA follow-up as conducted by the Federal Environment Agency (Ibama) in order to situate the practice of follow-up in the broader context of international best practice principles. Based on the findings, it was concluded that, due to the peculiarities of offshore seismic survey, it is necessary to promote adaptations in the procedures for monitoring impacts in order to ensure proper alignment with the principles and conceptual foundations that guide EIA practice. Specifically, the timing of the execution of the activity imposes challenges for its integration into the “conventional” cycle that has guided the monitoring of the impacts in the EIA of projects.展开更多
文摘The main sea water pump is the key equipment for the floating production storage and offloading (FPSO). Affected by some factors such as hull deformation, sea water corrosion, rigid base and pipeline stress, the vibration value of main sea water pump in the horizontal direction is abnormally high and malfunctions usually happen. Therefore, it is essential to make fault diagnosis of main sea water pump, By conventional off-line monitoring and vibration amplitude spectrum analysis, the fault cycle is found and the alarm value and stop value of equipment are set, which is helpful to equipment maintenance and accident prevention.
文摘Since the development of offshore oil and gas, increased submarine oil and gas pipelines were installed. All the early steel pipes of submarine pipelines depended on importing because of the strict requirements of comprehensive properties, such as, anti-corrosion, resistance to pressure and so on. To research and develop domes- tic steel pipes used for the submarine pipeline, the Longitudinal-seam Submerged Arc Welded (LSAW) pipes were made of steel plates cut from leveled hot rolled coils by both the JCOE and UOE (the forming process in which the plate like the letter “J”, “C”, “0” or “U” shape, then expansion) forming processes. Furthermore, the mechanical properties of the pipe base metal and weld metal were tested, and the results were in accordance with the corresponding pipe specification API SPEC 5L or DNV- OS-FI01, which showed that domestic LSAW pipes could be used for submarine oil and gas pipelines.
基金financial support from the National Key Sci-Tech Major Special Item(No.2011ZX05026-001)Program for Changjiang Scholars and Innovative Research Team in University(IRT1086)
文摘This paper presents a theoretical method and a finite element method to describe wellhead movement and uncemented casing strength in offshore oil and gas wells.Parameters considered in the theoretical method include operating load during drilling and completion and the temperature field,pressure field and the end effect of pressure during gas production.The finite element method for multistring analysis is developed to simulate random contact between casings.The relevant finite element analysis scheme is also presented according to the actual procedures of drilling,completion and gas production.Finally,field cases are presented and analyzed using the proposed methods.These are four offshore wells in the South China Sea.The calculated wellhead growths during gas production are compared with measured values.The results show that the wellhead subsides during drilling and completion and grows up during gas production.The theoretical and finite element solutions for wellhead growth are in good agreement with measured values and the deviations of calculation are within 10%.The maximum von Mises stress on the uncemented intermediate casing occurs during the running of the oil tube.The maximum von Mises stress on the uncemented production casing,calculated with the theoretical method occurs at removing the blow-out-preventer (BOP) while that calculated with the finite element method occurs at gas production.Finite element solutions for von Mises stress are recommended and the uncemented casings of four wells satisfy strength requirements.
文摘Multilateral wells promise cost savings to oil and fields as they have the potential to reduce overall drilling distances and minimize the number of slots required for the surface facility managing the well.However,drilling a multilateral well does not always increase the flow rate when compared to two single-horizontal wells due to competition in production inside the mother-bore.Here,a holistic approach is proposed to find the optimum balance between single and multilateral wells in an offshore oil development.In so doing,the integrated approach finds the highest Net Present Value(NPV)configuration of the field considering drilling,subsurface,production and financial analysis.The model employs stochastic perturbation and Markov Chain Monte-Carlo methods to solve the global maximising-NPV problem.In addition,a combination of Mixed-Integer Linear Programming(MILP),an improved Dijkstra algorithm and a Levenberg-Marquardt optimiser is proposed to solve the rate allocation problem.With the outcome from this analysis,the model suggests the optimum development including number of multilateral and single horizontal wells that would result in the highest NPV.The results demonstrate the potential for modelling to find the optimal use of petroleum facilities and to assist with planning and decision making.
文摘-Based on the calculation model for the floating laying of the offshore oil pipeline, this paper analyses in detail the internal force, and deformation of the pipeline under a definite structural form (pipeline and buoy) and the way of pulling. The obtained results can be used for the buoy deployment, structure design, and the determination of pulling parameters (the pulling force of the cable and its length, etc.), providing an effective analysis method for floating pipeline-laying. A calculation example is given to show the related calculation process and the main results are analyzed and discussed.
文摘This paper carries out the analysis of mechanics of a grip system of three-key-board hydraulic tongs developed for offshore oil pipe lines which has been successfully used in oil fields in China. The main improvement of this system is that a lever frame structure is used in the structural design, which reduces greatly the stresses of the major components of the oil pipe tongs. Theoretical analysis and numerical calculation based on thirteen basic equations developed Show that the teeth board of the tongs is not easy to slip as frequently happens to other systems and is of higher reliability.
文摘Since the founding of the ChinaNational Offshore Oil Corporationin 1982, the China offshore oil industryhas parted from closing the country tointernational intercourse and has steadilygone onto the developmental road at highspeed and with high efficiency inaccordance with international practice.In the short time of 13 years, relying onthe correlated policy offered by the stateand the intensification of enterprisemanagement, it has built up a large state-owned enterprise of independentmanagement, self-responsibility forprofits and losses, self-accumulation andself-perfection.
文摘Alang with big drop of oil prices, offshore oil engineering market demand is witnessing profound changes. This brings rare opportunities while huge challenges for Chinese offshore oil engineering enterprises. Chinese offshore oil engineering enterprises have made rapid development in recent years, but they still have a certain gap with European and American competitors. Only by answering the time's call for developmentof international market and having the courage to participate in international competition could Chinese offshore oil engineering enterprises gnaw strong unceasingly.
文摘According to Bloomberg on November 12, China Petrochemical Corp., Asia’s biggest ref iner, agreed to buy a 30 percent stake in Galp Energia SGPS SA (GALP)’s Brazilian unit, its second invest- ment in offshore oil fields in Latin America’s largest economy in as many years.
文摘This paper discusses the development of China's oil exploration & drilling equipment, and it focuses mainly on the domestication, industrialization, and standardization of fixed offshore drilling rigs primarily constructed by CNOOC. Considering the manufacturing of and application of deepwater drilling equipment in China, the authors put forward suggestions regarding industry policies and the standardization of China's offshore engineering equipment.
文摘Follow-up of environmental impacts is an integral part of the Environmental Impact Assessment (EIA) process, closely related to the effectiveness of the instrument. EIA follow-up has been receiving a lot of interest from scientists and practitioners, though it is recognized as one of the weakest points of EIA systems globally. Also, EIA follow-up is influenced by the context, mainly in terms of the types of projects or activities and their related impacts on the environment. Therefore, the present paper is focused on the investigation of the follow-up stage applied to the activity of seismic survey coupled with offshore oil & gas exploitation in Brazil. Research was based on a qualitative approach that included document analysis and semi-structured interviews with analysts involved in EIA processes, and sought to generate evidence of effectiveness of the EIA follow-up as conducted by the Federal Environment Agency (Ibama) in order to situate the practice of follow-up in the broader context of international best practice principles. Based on the findings, it was concluded that, due to the peculiarities of offshore seismic survey, it is necessary to promote adaptations in the procedures for monitoring impacts in order to ensure proper alignment with the principles and conceptual foundations that guide EIA practice. Specifically, the timing of the execution of the activity imposes challenges for its integration into the “conventional” cycle that has guided the monitoring of the impacts in the EIA of projects.