期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Analysis of offshore wind energy resources of China 被引量:1
1
作者 李希彬 孙晓燕 +1 位作者 李慧颖 张秋丰 《Marine Science Bulletin》 CAS 2015年第2期1-8,共8页
With the economic development, the problems of energy shortage become increasingly severe. As offshore wind energy has advantages, namely it is clean, renewable, not accounting for land area, without noise pollution, ... With the economic development, the problems of energy shortage become increasingly severe. As offshore wind energy has advantages, namely it is clean, renewable, not accounting for land area, without noise pollution, with large reserves, etc., which gradually attracts people's attention. In this paper, China's offshore annual average wind field and monthly average wind field under the mean climate state conditions are obtained, and the corresponding wind density distribution is calculated. China's offshore wind energy reserves and distribution conditions through the analysis of wind energy density distribution are summarized, and finally some suggestions for coastal offshore wind energy development and utilization in China are put forward. 展开更多
关键词 renewable energy offshore wind energy China offshore wind speed wind power density
下载PDF
Evaluation Method for Offshore Wind Energy Resources Using Scatterometer and Weibull Parameters 被引量:2
2
作者 Katsutoshi Kozai Teruo Ohsawa +1 位作者 Rinya Takahashi Yuko Takeyama 《Journal of Energy and Power Engineering》 2012年第11期1772-1778,共7页
The study discusses accuracy evaluation methods for offshore wind energy resources by using scatterometer SeaWinds-derived wind speed and Weibull parameters. The purpose of this study is to evaluate accuracies of SeaW... The study discusses accuracy evaluation methods for offshore wind energy resources by using scatterometer SeaWinds-derived wind speed and Weibull parameters. The purpose of this study is to evaluate accuracies of SeaWinds-derived Weibull mean wind speed and energy density by considering uncertainties inherent in SeaWinds wind speed estimates. In this study, 1159 SeaWinds-derived wind speeds covering the KEO buoy are used for estimating two Weibull parameters, scale and shape. On the other hand, observed wind speeds from 2004 to 2008 at the KEO buoy are used for simulating three kinds of wind speeds in order to quantify some uncertainties inherent in SeaWinds-derived wind speeds. It is found that uncertainties associated with wind speed estimates (operational wind speed range, sampling time) show small differences in scale, shape and Weibull mean wind speed except energy density among the simulated datasets. Furthermore, the upper and lower bounds of 90% confidence interval corresponding to SeaWinds number of observations indicate 4-2.5% error of Weibull mean wind speed and 4-6.8% error of energy density, respectively. 展开更多
关键词 offshore wind energy resource SCATTEROMETER Weibull parameter.
下载PDF
Caribbean Sea Offshore Wind Energy Assessment and Forecasting
3
作者 Brandon J.Bethel 《Journal of Marine Science and Application》 CSCD 2021年第3期558-571,共14页
The exploitation of wind energy is rapidly evolving and is manifested in the ever-expanding global network of offshore wind energy farms.For the Small Island Developing States of the Caribbean Sea(CS),harnessing this ... The exploitation of wind energy is rapidly evolving and is manifested in the ever-expanding global network of offshore wind energy farms.For the Small Island Developing States of the Caribbean Sea(CS),harnessing this mature technology is an important first step in the transition away from fossil fuels.This paper uses buoy and satellite observations of surface wind speed in the CS to estimate wind energy resources over the 2009–201911-year period and initiates hour-ahead forecasting using the long short-term memory(LSTM)network.Observations of wind power density(WPD)at the 100-m height showed a mean of approximately 1000 W/m^(2) in the Colombia Basin,though this value decreases radially to 600–800 W/m^(2) in the central CS to a minimum of approximately 250 W/m^(2) at its borders in the Venezuela Basin.The Caribbean Low-Level Jet(CLLJ)is also responsible for the waxing and waning of surface wind speed and as such,resource stability,though stable as estimated through monthly and seasonal coefficients of variation,is naturally governed by CLLJ activity.Using a commercially available offshore wind turbine,wind energy generation at four locations in the CS is estimated.Electricity production is greatest and most stable in the central CS than at either its eastern or western borders.Wind speed forecasts are also found to be more accurate at this location,and though technology currently restricts offshore wind turbines to shallow water,outward migration to and colonization of deeper water is an attractive option for energy exploitation. 展开更多
关键词 offshore wind energy wind energy forecasting Caribbean Sea Long short-term memory network offshore wind turbines
下载PDF
Scour and liquefaction issues for anchors and other subsea structures in floating offshore wind farms: A review 被引量:2
4
作者 B.Mutlu Sumer Veysel Sadan Ozgur Kirca 《Water Science and Engineering》 EI CAS CSCD 2022年第1期3-14,共12页
This article reviews scouring and liquefaction issues for anchor foundations of floating offshore wind farms.The review is organized in two sections:(1)the scouring issues for drag-embedment anchors(DEAs)and other sub... This article reviews scouring and liquefaction issues for anchor foundations of floating offshore wind farms.The review is organized in two sections:(1)the scouring issues for drag-embedment anchors(DEAs)and other subsea structures associated with DEAs such as tensioners,clump weights,and chains in floating offshore wind farms;and(2)the liquefaction issues for the same types of structures,particularly for DEAs.The scouring processes are described in detail,and the formulae and design guidelines for engineering predictions are included for quantities like scour depth,time scale,and sinking due to general shear failure of the bed soil caused by scoui\The latter is furnished with numerical examples.Likewise,in the second section,the liquefaction processes are described with special reference to residual liquefaction where pore-water pressure builds up in undrained soils(such as fine sand and silt)under waves,leading to liquefaction of the bed soil and precipitating failure of DEAs and their associated subsea structures.An integrated mathematical model to deal with liquefaction around and the resulted sinking failure of DEAs,introduced in a recent study,has been revisited.Implementation of the model is illustrated with a numerical example.It is believed that the present review and the existing literatures from the"neighboring"fields form a complementary source of information on scour and liquefaction around foundations of floating offshore wind farms. 展开更多
关键词 Floating structures LIQUEFACTION offshore structures offshore wind energy Renewable energy SCOURING
下载PDF
Criterion of aerodynamic performance of large-scale offshore horizontal axis wind turbines
5
作者 程兆雪 李仁年 +1 位作者 杨从新 胡文瑞 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第1期13-20,共8页
With the background of offshore wind energy projects, this paper studies aerodynamic performance and geometric characteristics of large capacity wind turbine rotors (1 to 10 MW), and the main characteristic paramete... With the background of offshore wind energy projects, this paper studies aerodynamic performance and geometric characteristics of large capacity wind turbine rotors (1 to 10 MW), and the main characteristic parameters such as the rated wind speed, blade tip speed, and rotor solidity. We show that the essential criterion of a high- performance wind turbine is a highest possible annual usable energy pattern factor and a smallest possible dimension, capturing the maximum wind energy and producing the maximum annual power. The influence of the above-mentioned three parameters on the pattern factor and rotor geometry of wind turbine operated in China's offshore meteoro- logical environment is investigated. The variation patterns of aerodynamic and geometric parameters are obtained, analyzed, and compared with each other. The present method for aerodynamic analysis and its results can form a basis for evaluating aerodynamic performance of large-scale offshore wind turbine rotors. 展开更多
关键词 offshore wind energy project horizontal axis wind turbine rotor aerody-namic design annual usable energy pattern factor power coefficient wind turbine rotor wind turbine blade
下载PDF
Design and Evaluation Tool for Operations and Maintenance Logistics Concepts for Offshore Wind Power Plants
6
作者 Torsten Mansterberg Robert Rauer Carlos Jahn 《Journal of Energy and Power Engineering》 2013年第11期2054-2059,共6页
In this article, the authors give an overview of different logistics concepts for operation and maintenance of OWPP (offshore wind power plants). These can be generally classified into onshore based and offshore bas... In this article, the authors give an overview of different logistics concepts for operation and maintenance of OWPP (offshore wind power plants). These can be generally classified into onshore based and offshore based concepts. The operation of OWPPs can still be improved as research has shown that the availability of OWPPs is low compared to onshore wind power plants. There are a few tools to calculate operating costs and to evaluate the different concepts. However, most tools have a weak focus on logistics although logistics account for a big share of the costs. The tool the authors are introducing in this article focuses on the logistics processes. It is first explained and then tested with an OWPP scenarin 展开更多
关键词 offshore wind energy offshore wind power plants operations and maintenance logistics concepts design and evaluationtool simulation.
下载PDF
Numerical Analysis of a Gravity Substructure for 5 MW Offshore Wind Turbines Due to Soil Conditions
7
作者 Min-Su Park Youn-Ju Jeong Young-Jun You 《Journal of Energy and Power Engineering》 2016年第3期150-158,共9页
In order to increase the gross generation of wind turbines, the size of a tower and a rotor-nacelle becomes larger. In other words, the substructure for offshore wind turbines is strongly influenced by the effect of w... In order to increase the gross generation of wind turbines, the size of a tower and a rotor-nacelle becomes larger. In other words, the substructure for offshore wind turbines is strongly influenced by the effect of wave forces as the size of substructure increases. In addition, since a large offshore wind turbine has a heavy dead load, the reaction forces on the substructure become severe, thus very firm foundations should be required. Therefore, the dynamic soil-structure interaction has to be fully considered and the wave forces acting on substructure accurately calculated. In the present study, ANSYS AQWA is used to evaluate the wave forces. Moreover, the substructure method is applied to evaluate the effect of soil-structure interaction. Using the wave forces and the stiffness and damping matrices obtained from this study, the structural analysis of the gravity substructure is carried out through ANSYS mechanical. The structural behaviors of the strength and deformation are evaluated to investigate an ultimate structural safety and serviceability of gravity substructure for various soil conditions. Also, the modal analysis is carried out to investigate the resonance between the wind turbine and the gravity substructure. 展开更多
关键词 offshore wind energy gravity substructure suction bucket foundation substructure method structural analysis.
下载PDF
Analysis of Offshore Wind Power: Application to Southern Thailand
8
作者 J. Waewsak C. Kongruang +1 位作者 M. Landry Y. Gagnon 《Journal of Energy and Power Engineering》 2011年第11期1096-1101,共6页
This paper presents an analysis of a pre-feasibility study of a 10 MW offshore wind power project in Nakhon Si Thammarat province, southern Thailand. The wind speeds at the hub heights of large scale wind turbine gene... This paper presents an analysis of a pre-feasibility study of a 10 MW offshore wind power project in Nakhon Si Thammarat province, southern Thailand. The wind speeds at the hub heights of large scale wind turbine generators (WTG), i.e. 80-100 m, were extrapolated using monthly mean wind shear coefficients and the l/7th exponent. Using WAsP 9.0, the annual energy production from several models of offshore wind farms using different WTG was analyzed. The capacity factor and the cost of energy were then computed. Using best available estimates, the analysis shows that the estimated annual mean offshore wind speeds at 80-100 m were in the range of 6.4 and 8.3 m/s. The annual energy production by the wind farm from nine models of wind turbine generators were in the range of 20-39 GWh/year, corresponding to a capacity factor in the range of 26-46%, while the cost of energy was 12-15 US cent/kWh. 展开更多
关键词 offshore wind energy annual energy production Weibull distribution wind turbine generator wind resource assessment.
下载PDF
Numerical Investigations on the Aerodynamic Performance of Wind Turbine: Downwind Versus Upwind Configuration 被引量:7
9
作者 Hu Zhou 《Journal of Marine Science and Application》 CSCD 2015年第1期61-68,共8页
Although the upwind configuration is more popular in the field of wind energy, the downwind one is a promising type for the offshore wind energy due to its special advantages. Different configurations have different a... Although the upwind configuration is more popular in the field of wind energy, the downwind one is a promising type for the offshore wind energy due to its special advantages. Different configurations have different aerodynamic performance and it is important to predict the performance of both downwind and upwind configurations accurately for designing and developing more reliable wind turbines. In this paper, a numerical investigation on the aerodynamic performance of National Renewable Energy Laboratory (NREL) phase V1 wind turbine in downwind and upwind configurations is presented. The open source toolbox OpenFOAM coupled with arbitrary mesh interface (AMI) method is applied to tackle rotating problems of wind turbines. Two 3D numerical models of NREL phase VI wind turbine with downwind and upwind configurations under four typical working conditions of incoming wind velocities are set up for the study of different unsteady characteristics of the downwind and upwind configurations, respectively. Numerical results of wake vortex structure, time histories of thrust, pressure distribution on the blade and limiting streamlines which can be used to identify points of separation in a 3D flow are presented. It can be concluded that thrust reduction due to blade-tower interaction is small for upwind wind turbines but relatively large for downwind wind turbines and attention should be paid to the vibration at a certain frequency induced by the cyclic reduction for both configurations. The results and conclusions are helpful to analyze the different aerodynamic performance of wind turbines between downwind and upwind configurations, providing useful references for practical design of wind turbine. 展开更多
关键词 offshore wind energy wind turbine downwind andupwind configuration wake flows arbitrary mesh interface (AMI) OPENFOAM aerodynamic performance
下载PDF
Power recovery method for testing the efficiency of the ECD of an integrated generation unit for offshore wind power and ocean wave energy 被引量:2
10
作者 CHEN WeiXing GAO Feng +2 位作者 MENG XiangDun REN An Ye HU Yan 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第3期333-344,共12页
Offshore wind power and ocean wave energy are clean,renewable and rich resources.The integrated generation unit for the two
关键词 offshore wind ocean wave energy conversion device(ECD) power recovery method efficiency
原文传递
Smart load control of the large-scale offshore wind turbine blades subject to wake effect 被引量:1
11
作者 Mingming Zhang Bin Tan Jianzhong Xu 《Science Bulletin》 SCIE EI CAS CSCD 2015年第19期1680-1687,共8页
The smart fatigue load control of a large-scale wind turbine blade subject to wake effect was numerically investigated in this paper. The performances were evaluated and compared at selected typical wind speeds within... The smart fatigue load control of a large-scale wind turbine blade subject to wake effect was numerically investigated in this paper. The performances were evaluated and compared at selected typical wind speeds within the whole operational region under three turbine layout strategies, i.e., column, row and array arrangements, together with a single turbine case as reference, utilizing our newly developed aero-servo-elastic platform. It was observed that not only the blade fatigue loads but the stabilities of power and collective pitch angle were effectively controlled for all cases, especially at the highest studied hub velocity of20 m/s, leading to the averaged reduction percentages in the standard deviations of the flapwise root moment, the flapwise tip deflection and the root damage equivalent load, of about 30.0 %, 20.0 % and 20.0 %, respectively. Furthermore, the control effectiveness gradually lessened in the sequences of single, column, row and array cases, with successively increasing effective turbulence intensity,within regions II and III. The performances in region III,associated with the impaired flow separation on the blade by the effective pitching action, were much better than those in region II, related to enhanced flow detachment. In addition,at the rated wind velocity, the control for the array case was superior over other three cases, which was thought to be originated from the more pitch activities to impair the uncontrolled flow separation on the blade surface. 展开更多
关键词 Smart rotor control offshore wind energy Fatigue load Wake effect Turbine layout strategy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部