Local scour around offshore wind turbine foundations presents a considerable challenge due to its potential influence on structural stability,driven by hydrodynamic forces.While research has made strides in comprehend...Local scour around offshore wind turbine foundations presents a considerable challenge due to its potential influence on structural stability,driven by hydrodynamic forces.While research has made strides in comprehending scouring mechanisms,notable complexities persist,specifically with newer foundation types.Addressing these limitations is vital for advancing our understanding of scour mechanisms and for improving mitigation strategies in offshore wind energy development.This review synthesizes current findings on local scour across various offshore foundations,encompassing field observations,data-driven approaches,turbulence-sediment interactions,scour evolution processes,influencing factors,and numerical model advancements.The objective is to enrich our understanding of local scour mechanisms.In addition,future research directions are outlined,including the development of robust arti-ficial intelligence models for accurate predictions,the exploration of vortex structure characteristics,and the refinement of numerical models to strengthen prediction capabilities while minimizing computational efforts.展开更多
As the offshore engineering moving from shallow to deep waters, the foundation types for fixed and floating platforms have been gradually evolving to minimize engineering costs and structural risks in the harsh offsho...As the offshore engineering moving from shallow to deep waters, the foundation types for fixed and floating platforms have been gradually evolving to minimize engineering costs and structural risks in the harsh offshore environments. Particular focus of this paper is on the foundation instability and its failure mechanisms as well as the relevant theory advances for the prevailing foundation types in both shallow and deep water depths. Piles, spudcans, gravity bases, suction caissons, and plate anchors are detailed in this paper. The failure phenomena and mechanisms for each type of foundations are identified and summarized, respectively. The theoretical approaches along with sophisticated empirical solutions for the bearing capacity problems are then presented. The major challenges are from flow-structure-soil coupling processes, rigorous constitutive modeling of cyclic behaviors of marine sediments, and the spatial variability of soil properties for large-spreading structures. Further researches are suggested to reveal the instability mechanisms for underpinning the evolution of offshore foundations.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52301326)the China Postdoctoral Science Foundation(No.2023M731999)the Open Foundation of the Key Laboratory of Coupling Process and Effect of Natural Resources Elements(No.2024KFKT017).
文摘Local scour around offshore wind turbine foundations presents a considerable challenge due to its potential influence on structural stability,driven by hydrodynamic forces.While research has made strides in comprehending scouring mechanisms,notable complexities persist,specifically with newer foundation types.Addressing these limitations is vital for advancing our understanding of scour mechanisms and for improving mitigation strategies in offshore wind energy development.This review synthesizes current findings on local scour across various offshore foundations,encompassing field observations,data-driven approaches,turbulence-sediment interactions,scour evolution processes,influencing factors,and numerical model advancements.The objective is to enrich our understanding of local scour mechanisms.In addition,future research directions are outlined,including the development of robust arti-ficial intelligence models for accurate predictions,the exploration of vortex structure characteristics,and the refinement of numerical models to strengthen prediction capabilities while minimizing computational efforts.
基金supported by the National Natural Science Foundation of China(Grant Nos.11232012,11372319 and 51309213)the National Key Basic Research Program of China(Grant No.2014CB046204)
文摘As the offshore engineering moving from shallow to deep waters, the foundation types for fixed and floating platforms have been gradually evolving to minimize engineering costs and structural risks in the harsh offshore environments. Particular focus of this paper is on the foundation instability and its failure mechanisms as well as the relevant theory advances for the prevailing foundation types in both shallow and deep water depths. Piles, spudcans, gravity bases, suction caissons, and plate anchors are detailed in this paper. The failure phenomena and mechanisms for each type of foundations are identified and summarized, respectively. The theoretical approaches along with sophisticated empirical solutions for the bearing capacity problems are then presented. The major challenges are from flow-structure-soil coupling processes, rigorous constitutive modeling of cyclic behaviors of marine sediments, and the spatial variability of soil properties for large-spreading structures. Further researches are suggested to reveal the instability mechanisms for underpinning the evolution of offshore foundations.