Thermo-gravimetric-analysis(TGA) was used to analyze the combustion characteristics of an oil shale and semi-cokes prepared from it.The effect of prior pyrolysis and TGA heating rate on the combustion process was stud...Thermo-gravimetric-analysis(TGA) was used to analyze the combustion characteristics of an oil shale and semi-cokes prepared from it.The effect of prior pyrolysis and TGA heating rate on the combustion process was studied.Prior pyrolysis affects the initial temperature of mass loss and the ignition temperature.The ignition temperature increases as the volatile content of the sample decreases.TG/DTG curves obtained at different heating rates show that heating rate has little effect on ignition temperature.But the peak of combustion shifts to higher temperatures as the heating rate is increased.The Coats-Redfern integration method was employed to find the combustion-reaction kinetic parameters for the burning of oil shale and oil shale semi-coke.展开更多
Due to the poor surface/interfacial interaction and the large gaps in the size and microstructure between biomass and clay mineral,it was difficult to adjust the structure and performance of biochar/clay mineral compo...Due to the poor surface/interfacial interaction and the large gaps in the size and microstructure between biomass and clay mineral,it was difficult to adjust the structure and performance of biochar/clay mineral composites at the molecular level.Herein,oil shale semi-coke composed of multi-minerals and organic matters was used as a promising precursor to prepare biochar/clay mineral nanocomposites via phosphoric acid-assisted hydrothermal treatment followed by KOH activation for removal of organic pollutants from aqueous solution.The results revealed that the nanocomposites presented well-defined sheet-like morphology,and the carbon species uniformly anchored on the surface of clay minerals.With the changes in the pore structure,surface charge and functional groups after two-step modification,the nanocomposites exhibited much better adsorption property toward organic pollutants than the raw oil shale semi-coke,and the maximum adsorption capacities of methylene blue,methyl violet,tetracycline,and malachite green were 165.30 mg g^(−1),159.02 mg g^(−1),145.89 mg g^(−1),and 2137.36 mg g^(−1),respectively.The adsorption mechanisms involved electrostatic attraction,π-πstacking and hydrogen bonds.After five consecutive adsorption-desorption,there was no obvious decrease in the adsorption capacity of malachite green,exhibiting good cyclic regeneration performance.It is expected to provide a feasible strategy for the preparation of biochar/clay mineral nanocomposites with the excellent adsorption performances for removal of organic pollutants based on full-component resource utilization of oil shale semi-coke.展开更多
The effect of oil shale semi-coke(SC)on the mineralogy and morphology of the ash deposited on probes situated in the flue path of a circulating fluidized bed(CFB)which burns Zhundong lignite(ZD)was investigated.10 wt%...The effect of oil shale semi-coke(SC)on the mineralogy and morphology of the ash deposited on probes situated in the flue path of a circulating fluidized bed(CFB)which burns Zhundong lignite(ZD)was investigated.10 wt%or 20 wt%SC was added to ZD,which were then combusted in the CFB furnace at 950℃.Two probes with vertical and horizontal orientations were installed in the flue duct to simulate ash deposition.Both windward and leeward ash deposits on probes(P_(1)W,P_(1)L,P_(2)W and P_(2)L)were analyzed by using a scanning electron microscopy with energy dispersive X-ray(SEM-EDX),X-ray diffraction(XRD),an inductively coupled plasma optical emission spectrometry ICP-OES,and a particle size analyzer.When ZD was burned alone,the P1W deposit was comprised of agglomerates(<30µm)enriched in CaSO_(4)and Na_(2)SiO_(3),incurring significant sintering.The P1L and P2W deposits,however,were of both discrete and agglomerated particles in similar mineral phases but with coarser sizes.The P_(2)L deposit was mainly fine ash particles where Na_(2)SiO_(3)and Na_(2)SO_(4)were absent.As SC was added,the agglomerates in both P1W and P1L decreased.Moreover,SiO_(2)and Ca/Na aluminosilicates dominated the mineral phases whereas Na_(2)SiO_(3)and Na_(2)SO_(4)disappeared,showing a decrease in deposit stickiness.Likewise,the P2W deposit was found less spread on the probe,decreasing its deposition propensity.Na-bearing minerals turned into(Na,K)(Si_(3)Al)O_(8)and(Ca,Na)(Si,Al)4O8 in the P_(2)W deposit.Moreover,Na in the deposits decreased from 32 mg/g to less than 15 mg/g as SC presented.The addition of SC would therefore help alleviate the propensity of ash deposition in the flue path in the CFB combustion of ZD.展开更多
基金Project CPEUKF08-04 support by the Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education of China
文摘Thermo-gravimetric-analysis(TGA) was used to analyze the combustion characteristics of an oil shale and semi-cokes prepared from it.The effect of prior pyrolysis and TGA heating rate on the combustion process was studied.Prior pyrolysis affects the initial temperature of mass loss and the ignition temperature.The ignition temperature increases as the volatile content of the sample decreases.TG/DTG curves obtained at different heating rates show that heating rate has little effect on ignition temperature.But the peak of combustion shifts to higher temperatures as the heating rate is increased.The Coats-Redfern integration method was employed to find the combustion-reaction kinetic parameters for the burning of oil shale and oil shale semi-coke.
基金Major Projects of the Science and Technology Plan of Gansu Province(21ZD4GA001)Young Scholar of Regional Development of the Chinese Academy of Sciences(CAS)(The Science Development Talent Teach words[2022]No.10)+2 种基金Major Program of the Lanzhou Institute of Chemical Physics,CAS(No.ZYFZFX-8)Top Ten Science and Technology Innovation Projects in Lanzhou,China(2019-3-1)Key Research and Development Plan of Gansu Province(21YF5FA137).
文摘Due to the poor surface/interfacial interaction and the large gaps in the size and microstructure between biomass and clay mineral,it was difficult to adjust the structure and performance of biochar/clay mineral composites at the molecular level.Herein,oil shale semi-coke composed of multi-minerals and organic matters was used as a promising precursor to prepare biochar/clay mineral nanocomposites via phosphoric acid-assisted hydrothermal treatment followed by KOH activation for removal of organic pollutants from aqueous solution.The results revealed that the nanocomposites presented well-defined sheet-like morphology,and the carbon species uniformly anchored on the surface of clay minerals.With the changes in the pore structure,surface charge and functional groups after two-step modification,the nanocomposites exhibited much better adsorption property toward organic pollutants than the raw oil shale semi-coke,and the maximum adsorption capacities of methylene blue,methyl violet,tetracycline,and malachite green were 165.30 mg g^(−1),159.02 mg g^(−1),145.89 mg g^(−1),and 2137.36 mg g^(−1),respectively.The adsorption mechanisms involved electrostatic attraction,π-πstacking and hydrogen bonds.After five consecutive adsorption-desorption,there was no obvious decrease in the adsorption capacity of malachite green,exhibiting good cyclic regeneration performance.It is expected to provide a feasible strategy for the preparation of biochar/clay mineral nanocomposites with the excellent adsorption performances for removal of organic pollutants based on full-component resource utilization of oil shale semi-coke.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.51706028)the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(Grant No.2017-K01)+1 种基金the Joint Grants Scheme of Shanxi Province and National Science Foundation of China(Key Applied Projects U1610254)the Australia Research Council under the ARC Linkage Projects Scheme(Project No.LP100200135).
文摘The effect of oil shale semi-coke(SC)on the mineralogy and morphology of the ash deposited on probes situated in the flue path of a circulating fluidized bed(CFB)which burns Zhundong lignite(ZD)was investigated.10 wt%or 20 wt%SC was added to ZD,which were then combusted in the CFB furnace at 950℃.Two probes with vertical and horizontal orientations were installed in the flue duct to simulate ash deposition.Both windward and leeward ash deposits on probes(P_(1)W,P_(1)L,P_(2)W and P_(2)L)were analyzed by using a scanning electron microscopy with energy dispersive X-ray(SEM-EDX),X-ray diffraction(XRD),an inductively coupled plasma optical emission spectrometry ICP-OES,and a particle size analyzer.When ZD was burned alone,the P1W deposit was comprised of agglomerates(<30µm)enriched in CaSO_(4)and Na_(2)SiO_(3),incurring significant sintering.The P1L and P2W deposits,however,were of both discrete and agglomerated particles in similar mineral phases but with coarser sizes.The P_(2)L deposit was mainly fine ash particles where Na_(2)SiO_(3)and Na_(2)SO_(4)were absent.As SC was added,the agglomerates in both P1W and P1L decreased.Moreover,SiO_(2)and Ca/Na aluminosilicates dominated the mineral phases whereas Na_(2)SiO_(3)and Na_(2)SO_(4)disappeared,showing a decrease in deposit stickiness.Likewise,the P2W deposit was found less spread on the probe,decreasing its deposition propensity.Na-bearing minerals turned into(Na,K)(Si_(3)Al)O_(8)and(Ca,Na)(Si,Al)4O8 in the P_(2)W deposit.Moreover,Na in the deposits decreased from 32 mg/g to less than 15 mg/g as SC presented.The addition of SC would therefore help alleviate the propensity of ash deposition in the flue path in the CFB combustion of ZD.