By reviewing the development of “three-high” oil and gas well testing technology of Sinopec in recent years, this paper systematically summarizes the application of “three-high” oil and gas well testing technology...By reviewing the development of “three-high” oil and gas well testing technology of Sinopec in recent years, this paper systematically summarizes the application of “three-high” oil and gas well testing technology of Sinopec in engineering optimization design technology, and high temperature and high pressure testing technology, high pressure and high temperature transformation completion integration technology. Major progress has been made in seven aspects: plug removal and re-production technology of production wells in high acid gas fields;wellbore preparation technology of ultra-deep, high-pressure, and high-temperature oil and gas wells;surface metering technology;and supporting tool development technology. This paper comprehensively analyzes the challenges faced by the “three-high” oil and gas well production testing technology in four aspects: downhole tools, production testing technology, safe production testing, and the development of low-cost production test tools. Four development directions are put forward: 1) Improve ultra-deep oil and gas testing technology and strengthen integrated geological engineering research. 2) Deepen oil and gas well integrity evaluation technology to ensure the life cycle of oil and gas wells. 3) Carry out high-end, customized, and intelligent research on oil test tools to promote the low-cost and efficient development of ultra deep reservoirs. 4) Promote the fully automatic control of the surface metering process to realize the safe development of “three-high” reservoirs.展开更多
During deep water oil well testing, the low temperature environment is easy to cause wax precipitation, which affects the normal operation of the test and increases operating costs and risks. Therefore, a numerical me...During deep water oil well testing, the low temperature environment is easy to cause wax precipitation, which affects the normal operation of the test and increases operating costs and risks. Therefore, a numerical method for predicting the wax precipitation region in oil strings was proposed based on the temperature and pressure fields of deep water test string and the wax precipitation calculation model. And the factors affecting the wax precipitation region were analyzed. The results show that: the wax precipitation region decreases with the increase of production rate, and increases with the decrease of geothermal gradient, increase of water depth and drop of water-cut of produced fluid, and increases slightly with the increase of formation pressure. Due to the effect of temperature and pressure fields, wax precipitation region is large in test strings at the beginning of well production. Wax precipitation region gradually increases with the increase of shut-in time. These conclusions can guide wax prevention during the testing of deep water oil well, to ensure the success of the test.展开更多
The mass transfer between heavy oil and liquid carbon dioxide and the changes of the heavy phase(mixture of heavy oil and CO_2) and light phase(pure CO_2) in the mixture were tested in lab with heavy oil samples from ...The mass transfer between heavy oil and liquid carbon dioxide and the changes of the heavy phase(mixture of heavy oil and CO_2) and light phase(pure CO_2) in the mixture were tested in lab with heavy oil samples from Russia. The experimental results showed that the heavy oil hardly expanded when the concentration of carbon dioxide in the mixture was 10%. When the concentration of carbon dioxide was higher than 26%, the volume of the heavy phase decreased, and the viscosity of the heavy phase increased exponentially as the light components extracted from the heavy oil exceeded the carbon dioxide saturated in the heavy oil. When the concentration of carbon dioxide in the mixture was 26%, the effect of viscosity reducing to the heavy phase was the strongest. The density of the light and heavy phases, volume factor, and solubility of gas and flash viscosity of heavy phase all increased with the rise of carbon dioxide concentration in the mixture. The best concentration of carbon dioxide in the mixture was 26%, when the heavy oil expanded the most and the viscosity of the heavy phase was the lowest. When the concentration of carbon dioxide in the mixture was between 10% and 26%, the volume of the light phase was the smallest and the oil displacement effect was the best.展开更多
Ⅰ The Indexes of Detecting Oil and Gas Resources The deeply buried reservoir which in a dynamic equilibrium state has a great pressure inside, and between it and earth surface there is a great difference of pressure....Ⅰ The Indexes of Detecting Oil and Gas Resources The deeply buried reservoir which in a dynamic equilibrium state has a great pressure inside, and between it and earth surface there is a great difference of pressure. Therefore the hydrocarbon must spread and move vertically to the surface along the pressure gradient orientation. Hydrocarbons in the reservoir along some small rifts, cracks, joints and cleavages penetrate the overlying strata and seepage onto the surface. Thus the hydrocarbons become unvisble oil and gas signs. This process is called the phenomena of hydrocarbon microseepage of reservoir. Hydrocarbons microseepage in the process展开更多
The foundations of the "Africa rising" narrative may have increasingly been tested in recent months. Security concerns, the Ebola crisis in West Africa and conflict in Libya have been some of the stumbling blocks th...The foundations of the "Africa rising" narrative may have increasingly been tested in recent months. Security concerns, the Ebola crisis in West Africa and conflict in Libya have been some of the stumbling blocks the continent has had to face. These have continuously challenged its ability to respond to events that could derail the past years' economic growth. The impact of lower oil prices particularly could be a major shock to the region, especially for oilexporting countries.展开更多
Aimed at the current treatment status of the polymer-flooding wastewater in Bohai oilfield, electrochemical technology used for polymer-degradation and oil-removal was researched. It formed the process flow of cyclone...Aimed at the current treatment status of the polymer-flooding wastewater in Bohai oilfield, electrochemical technology used for polymer-degradation and oil-removal was researched. It formed the process flow of cyclone mixed dosing → electrochemical removal oil → inclined tube removal oil → walnut shell filter, and a set of skid mounted wastewater containing polymer treatment plant was designed and manufactured, which was used for the field test of electrochemical treatment of wastewater containing polymer in offshore oilfield. The result shows that the oil removal rate of the electrochemical treatment process is over 98%, and the synergistic effect is significant especially used in conjunction with water clarifier of BHQ-04. When the amount of water clarifier is 50 - 150 mg/L, the oil content, the median particle diameter and the suspended solids content of the filtered water is 8 - 18 mg/L, 1.9 - 2.26 μm and 1.39 - 2.04 mg/L respectively, which reach the scene water quality standards for water injection.展开更多
This paper proposes an effective method for early diagnosis (stress concentrating) of the oil-gas pipeline. Based on the principle of electromagnetic induction Faraday, we have designed and realized the nondestructive...This paper proposes an effective method for early diagnosis (stress concentrating) of the oil-gas pipeline. Based on the principle of electromagnetic induction Faraday, we have designed and realized the nondestructive testing system for stress concentration area of ferromagnetic materials by means of the research of metal materials inverse magnetostrictive effect mechanism. The system changes the influence degree of the stress in ferromagnetic materials’ magnetic conductance to the corresponding voltage array by using discrete wavelet analysis method to process the data, in which not only the measuring accuracy is improved, but also the stress concentration is more directly reflected. The experiments confirm that the electromagnetic stress testing method is feasible and valid.展开更多
文摘By reviewing the development of “three-high” oil and gas well testing technology of Sinopec in recent years, this paper systematically summarizes the application of “three-high” oil and gas well testing technology of Sinopec in engineering optimization design technology, and high temperature and high pressure testing technology, high pressure and high temperature transformation completion integration technology. Major progress has been made in seven aspects: plug removal and re-production technology of production wells in high acid gas fields;wellbore preparation technology of ultra-deep, high-pressure, and high-temperature oil and gas wells;surface metering technology;and supporting tool development technology. This paper comprehensively analyzes the challenges faced by the “three-high” oil and gas well production testing technology in four aspects: downhole tools, production testing technology, safe production testing, and the development of low-cost production test tools. Four development directions are put forward: 1) Improve ultra-deep oil and gas testing technology and strengthen integrated geological engineering research. 2) Deepen oil and gas well integrity evaluation technology to ensure the life cycle of oil and gas wells. 3) Carry out high-end, customized, and intelligent research on oil test tools to promote the low-cost and efficient development of ultra deep reservoirs. 4) Promote the fully automatic control of the surface metering process to realize the safe development of “three-high” reservoirs.
基金Supported by the National Key Basic Research and Development Program(973 Program),China(2015CB251205)
文摘During deep water oil well testing, the low temperature environment is easy to cause wax precipitation, which affects the normal operation of the test and increases operating costs and risks. Therefore, a numerical method for predicting the wax precipitation region in oil strings was proposed based on the temperature and pressure fields of deep water test string and the wax precipitation calculation model. And the factors affecting the wax precipitation region were analyzed. The results show that: the wax precipitation region decreases with the increase of production rate, and increases with the decrease of geothermal gradient, increase of water depth and drop of water-cut of produced fluid, and increases slightly with the increase of formation pressure. Due to the effect of temperature and pressure fields, wax precipitation region is large in test strings at the beginning of well production. Wax precipitation region gradually increases with the increase of shut-in time. These conclusions can guide wax prevention during the testing of deep water oil well, to ensure the success of the test.
文摘The mass transfer between heavy oil and liquid carbon dioxide and the changes of the heavy phase(mixture of heavy oil and CO_2) and light phase(pure CO_2) in the mixture were tested in lab with heavy oil samples from Russia. The experimental results showed that the heavy oil hardly expanded when the concentration of carbon dioxide in the mixture was 10%. When the concentration of carbon dioxide was higher than 26%, the volume of the heavy phase decreased, and the viscosity of the heavy phase increased exponentially as the light components extracted from the heavy oil exceeded the carbon dioxide saturated in the heavy oil. When the concentration of carbon dioxide in the mixture was 26%, the effect of viscosity reducing to the heavy phase was the strongest. The density of the light and heavy phases, volume factor, and solubility of gas and flash viscosity of heavy phase all increased with the rise of carbon dioxide concentration in the mixture. The best concentration of carbon dioxide in the mixture was 26%, when the heavy oil expanded the most and the viscosity of the heavy phase was the lowest. When the concentration of carbon dioxide in the mixture was between 10% and 26%, the volume of the light phase was the smallest and the oil displacement effect was the best.
文摘Ⅰ The Indexes of Detecting Oil and Gas Resources The deeply buried reservoir which in a dynamic equilibrium state has a great pressure inside, and between it and earth surface there is a great difference of pressure. Therefore the hydrocarbon must spread and move vertically to the surface along the pressure gradient orientation. Hydrocarbons in the reservoir along some small rifts, cracks, joints and cleavages penetrate the overlying strata and seepage onto the surface. Thus the hydrocarbons become unvisble oil and gas signs. This process is called the phenomena of hydrocarbon microseepage of reservoir. Hydrocarbons microseepage in the process
文摘The foundations of the "Africa rising" narrative may have increasingly been tested in recent months. Security concerns, the Ebola crisis in West Africa and conflict in Libya have been some of the stumbling blocks the continent has had to face. These have continuously challenged its ability to respond to events that could derail the past years' economic growth. The impact of lower oil prices particularly could be a major shock to the region, especially for oilexporting countries.
文摘Aimed at the current treatment status of the polymer-flooding wastewater in Bohai oilfield, electrochemical technology used for polymer-degradation and oil-removal was researched. It formed the process flow of cyclone mixed dosing → electrochemical removal oil → inclined tube removal oil → walnut shell filter, and a set of skid mounted wastewater containing polymer treatment plant was designed and manufactured, which was used for the field test of electrochemical treatment of wastewater containing polymer in offshore oilfield. The result shows that the oil removal rate of the electrochemical treatment process is over 98%, and the synergistic effect is significant especially used in conjunction with water clarifier of BHQ-04. When the amount of water clarifier is 50 - 150 mg/L, the oil content, the median particle diameter and the suspended solids content of the filtered water is 8 - 18 mg/L, 1.9 - 2.26 μm and 1.39 - 2.04 mg/L respectively, which reach the scene water quality standards for water injection.
文摘This paper proposes an effective method for early diagnosis (stress concentrating) of the oil-gas pipeline. Based on the principle of electromagnetic induction Faraday, we have designed and realized the nondestructive testing system for stress concentration area of ferromagnetic materials by means of the research of metal materials inverse magnetostrictive effect mechanism. The system changes the influence degree of the stress in ferromagnetic materials’ magnetic conductance to the corresponding voltage array by using discrete wavelet analysis method to process the data, in which not only the measuring accuracy is improved, but also the stress concentration is more directly reflected. The experiments confirm that the electromagnetic stress testing method is feasible and valid.