Heat transfer coefficients of the quench medium are necessary for heat-treatment simulation. Cooling characteristics of quenching oil vary with kinds and usage greatly. Users are selecting oil solutions that come up t...Heat transfer coefficients of the quench medium are necessary for heat-treatment simulation. Cooling characteristics of quenching oil vary with kinds and usage greatly. Users are selecting oil solutions that come up to their desired hardness and quenching distortion requirements. In particular cooling performance rises by agitation and decompression. Therefore we identified a heat transfer coefficient by usage and kinds of quenching oil. Cooling characteristics are different greatly by a kind of quenching oil. A difference of a cooling characteristic by a kind of oil depends on a temperature range of a boiling stage and the maximum heat transfer coefficient mainly. On the other hand, in a convection stage, there are few changes in a boiling stage. Even if quenching oil temperature is changed, heat transfer coefficients do not change greatly. When quenching oil stirred, heat transfer coefficients of vapor blanket stage and a convection stage rise, but there are a few changes in a boiling stage. When quenching oil is decompressed a temperature range of a high heat transfer coefficient moves to the low temperature side. In addition, a heat transfer coefficient in a vapor blanket stage comes down. For precision improvement of heat-treatment simulation, it is important that the heat transfer coefficient is calculated in conformity to the on-site use reality.展开更多
The so-called indirect evaporative cooling technology is widely used in air conditioning applications.The thermal characterization of tube-type indirect evaporative coolers,however,still presents challenges which need...The so-called indirect evaporative cooling technology is widely used in air conditioning applications.The thermal characterization of tube-type indirect evaporative coolers,however,still presents challenges which need to be addressed to make this technology more reliable and easy to implement.This experimental study deals with the performances of a tube-type indirect evaporative cooler based on an aluminum tube with a 10 mm diameter.In particular,the required tests were carried out considering a range of dry-bulb temperatures between 16℃ and 18℃ and a temperature difference between the wet-bulb and dry-bulb temperature of 2℃∼4℃.The integrated convective heat transfer coefficient inside the tube in the drenching condition has been found to lie in the range between 36.10 and 437.4(W/(m^(2)⋅K)).展开更多
Ammonia corrosion in copper tube will affect the safety of boiler running in power plant. Therefore, no copper in heating system has become a technical orientation in heat exchanger reconstruction, This paper analy...Ammonia corrosion in copper tube will affect the safety of boiler running in power plant. Therefore, no copper in heating system has become a technical orientation in heat exchanger reconstruction, This paper analyzes the condition and mechanism of ammonia corrosion occurring in copper tube used in coal-fired power plants. Using a general steam condensation testing equipment only for horizontal single tube, with water vapor and water as working fluid, on two types of steel tube with 2-side enhancement heat transfer, namely, a spirally fluted tube and a ratchet tube with internal spiral groove (RISG tube) which was developed recently, a set of experimental tests are conducted to investigate the characteristics of heat transfer and hydromeehanics. In order to compare easily, both one copper smooth tube and one steel smooth tube are also used in the experiment. The experimental results, which get from single horizontal tube, show that the overall heat transfer coefficient of steel spirally fluted tube are improved by 10%o to 17%, and that of the steel RISG tube(22%-28%) is better than steel spirally fluted tube, its flow resistance coefficient is only increased by 22% to 66% when compared with smooth tube. Based on a lot of experimental data, the steel spirally fluted tube and the steel RISG tube were applied in a low pressure preheater and an oil-cooler of some or other power plant respectively. The field testing results showed that their heat transfer coefficient with each types of enhancement heat transfer tubes were improved by 2.5% and 21%-45% comparing with copper smooth tube heat exchangers. Both basic and field experiment indicates that the steel tube with 2-side enhancement heat transfer is an ideal choice for heat exchanger reconstruction in no copper issue in power plants.展开更多
文摘Heat transfer coefficients of the quench medium are necessary for heat-treatment simulation. Cooling characteristics of quenching oil vary with kinds and usage greatly. Users are selecting oil solutions that come up to their desired hardness and quenching distortion requirements. In particular cooling performance rises by agitation and decompression. Therefore we identified a heat transfer coefficient by usage and kinds of quenching oil. Cooling characteristics are different greatly by a kind of quenching oil. A difference of a cooling characteristic by a kind of oil depends on a temperature range of a boiling stage and the maximum heat transfer coefficient mainly. On the other hand, in a convection stage, there are few changes in a boiling stage. Even if quenching oil temperature is changed, heat transfer coefficients do not change greatly. When quenching oil stirred, heat transfer coefficients of vapor blanket stage and a convection stage rise, but there are a few changes in a boiling stage. When quenching oil is decompressed a temperature range of a high heat transfer coefficient moves to the low temperature side. In addition, a heat transfer coefficient in a vapor blanket stage comes down. For precision improvement of heat-treatment simulation, it is important that the heat transfer coefficient is calculated in conformity to the on-site use reality.
基金This work was supported by Natural Science Basic Research Program of Shaanxi(2021JQ-689).
文摘The so-called indirect evaporative cooling technology is widely used in air conditioning applications.The thermal characterization of tube-type indirect evaporative coolers,however,still presents challenges which need to be addressed to make this technology more reliable and easy to implement.This experimental study deals with the performances of a tube-type indirect evaporative cooler based on an aluminum tube with a 10 mm diameter.In particular,the required tests were carried out considering a range of dry-bulb temperatures between 16℃ and 18℃ and a temperature difference between the wet-bulb and dry-bulb temperature of 2℃∼4℃.The integrated convective heat transfer coefficient inside the tube in the drenching condition has been found to lie in the range between 36.10 and 437.4(W/(m^(2)⋅K)).
文摘Ammonia corrosion in copper tube will affect the safety of boiler running in power plant. Therefore, no copper in heating system has become a technical orientation in heat exchanger reconstruction, This paper analyzes the condition and mechanism of ammonia corrosion occurring in copper tube used in coal-fired power plants. Using a general steam condensation testing equipment only for horizontal single tube, with water vapor and water as working fluid, on two types of steel tube with 2-side enhancement heat transfer, namely, a spirally fluted tube and a ratchet tube with internal spiral groove (RISG tube) which was developed recently, a set of experimental tests are conducted to investigate the characteristics of heat transfer and hydromeehanics. In order to compare easily, both one copper smooth tube and one steel smooth tube are also used in the experiment. The experimental results, which get from single horizontal tube, show that the overall heat transfer coefficient of steel spirally fluted tube are improved by 10%o to 17%, and that of the steel RISG tube(22%-28%) is better than steel spirally fluted tube, its flow resistance coefficient is only increased by 22% to 66% when compared with smooth tube. Based on a lot of experimental data, the steel spirally fluted tube and the steel RISG tube were applied in a low pressure preheater and an oil-cooler of some or other power plant respectively. The field testing results showed that their heat transfer coefficient with each types of enhancement heat transfer tubes were improved by 2.5% and 21%-45% comparing with copper smooth tube heat exchangers. Both basic and field experiment indicates that the steel tube with 2-side enhancement heat transfer is an ideal choice for heat exchanger reconstruction in no copper issue in power plants.